• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4597081)   Today's Articles (5279)   Subscriber (49345)
For: Michaels CA, Mullin AS, Park J, Chou JZ, Flynn GW. The collisional deactivation of highly vibrationally excited pyrazine by a bath of carbon dioxide: Excitation of the infrared inactive (1000), (0200), and (0220) bath vibrational modes. J Chem Phys 1998. [DOI: 10.1063/1.475666] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Ahamed SS, Kim H, Paul AK, West NA, Winner JD, Donzis DA, North SW, Hase WL. Comparison of intermolecular energy transfer from vibrationally excited benzene in mixed nitrogen-benzene baths at 140 K and 300 K. J Chem Phys 2020;153:144116. [PMID: 33086796 DOI: 10.1063/5.0021293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
2
Wang H, Wen K, You X, Mao Q, Luo KH, Pilling MJ, Robertson SH. Energy transfer in intermolecular collisions of polycyclic aromatic hydrocarbons with bath gases He and Ar. J Chem Phys 2019;151:044301. [PMID: 31370521 DOI: 10.1063/1.5094104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
3
Paul AK, West NA, Winner JD, Bowersox RDW, North SW, Hase WL. Non-statistical intermolecular energy transfer from vibrationally excited benzene in a mixed nitrogen-benzene bath. J Chem Phys 2018;149:134101. [DOI: 10.1063/1.5043139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
4
Hsu HC, Tsai MT, Dyakov YA, Ni CK. Energy transfer of highly vibrationally excited molecules studied by crossed molecular beam/time-sliced velocity map ion imaging. INT REV PHYS CHEM 2012. [DOI: 10.1080/0144235x.2012.673282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
5
Ivanov MV, Babikov D. Mixed quantum-classical theory for the collisional energy transfer and the rovibrational energy flow: application to ozone stabilization. J Chem Phys 2011;134:144107. [PMID: 21495742 DOI: 10.1063/1.3576103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
6
Barker JR, Weston RE. Collisional Energy Transfer Probability Densities P(E, J; E′, J′) for Monatomics Colliding with Large Molecules. J Phys Chem A 2010;114:10619-33. [DOI: 10.1021/jp106443d] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
7
Tao W, Xian-Yang C, Jian-Bo P, Guan-Zhi J. H atom transfer of collinear OH…O system. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20000180309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
8
Havey DK, Du J, Liu Q, Mullin AS. Full State-Resolved Energy Gain Profiles of CO2 (J = 2−80) from Collisions of Highly Vibrationally Excited Molecules. 1. Relaxation of Pyrazine (E = 37900 cm−1). J Phys Chem A 2009;114:1569-80. [DOI: 10.1021/jp908934j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
9
Bernshtein V, Oref I. Differential cross-sections and energy transfer quantities in azulene/argon collisions. Mol Phys 2008. [DOI: 10.1080/00268970701781917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
10
Liu CL, Hsu HC, Hsu YC, Ni CK. Energy transfer of highly vibrationally excited naphthalene. II. Vibrational energy dependence and isotope and mass effects. J Chem Phys 2008;128:124320. [DOI: 10.1063/1.2868753] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
11
Liu CL, Hsu HC, Hsu YC, Ni CK. Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence. J Chem Phys 2007;127:104311. [PMID: 17867751 DOI: 10.1063/1.2764077] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
12
Bustos-Marún RA, Coronado EA, Ferrero JC. Building transition probabilities for any condition using reduced cumulative energy transfer functions in H2O–H2O collisions. J Chem Phys 2007;126:124305. [PMID: 17411121 DOI: 10.1063/1.2430713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
13
Liu CL, Hsu HC, Lyu JJ, Ni CK. Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon. J Chem Phys 2006;125:204309. [PMID: 17144702 DOI: 10.1063/1.2388267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
14
Bernshtein V, Oref I. Energy transfer between azulene and krypton: Comparison between experiment and computation. J Chem Phys 2006;125:133105. [PMID: 17029431 DOI: 10.1063/1.2207608] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
15
Liu CL, Hsu HC, Lyu JJ, Ni CK. Energy transfer of highly vibrationally excited azulene: Collisions between azulene and krypton. J Chem Phys 2006;124:054302. [PMID: 16468864 DOI: 10.1063/1.2150468] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
16
Li Z, Sansom R, Bonella S, Coker DF, Mullin AS. Trajectory Study of Supercollision Relaxation in Highly Vibrationally Excited Pyrazine and CO2. J Phys Chem A 2005;109:7657-66. [PMID: 16834139 DOI: 10.1021/jp0525336] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Kimura Y, Yamamoto Y, Fujiwara H, Terazima M. Vibrational energy relaxation of azulene studied by the transient grating method. I. Supercritical fluids. J Chem Phys 2005;123:054512. [PMID: 16108674 DOI: 10.1063/1.1994847] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
18
Payne MA, Milce AP, Frost MJ, Orr BJ. Rovibrational Energy Transfer in the 4νCH Manifold of Acetylene Viewed by IR−UV Double Resonance Spectroscopy. 2. Perturbed States with J = 17 and 18. J Phys Chem B 2005;109:8332-43. [PMID: 16851977 DOI: 10.1021/jp0463518] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
19
Bernshtein V, Oref I. Energy Transfer between Polyatomic Molecules. 1. Gateway Modes, Energy Transfer Quantities and Energy Transfer Probability Density Functions in Benzene−Benzene and Ar−Benzene Collisions. J Phys Chem B 2005;109:8310-9. [PMID: 16851974 DOI: 10.1021/jp046693d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
20
Kimura Y, Abe D, Terazima M. Vibrational energy relaxation of naphthalene in the S(1) state in various gases. J Chem Phys 2004;121:5794-800. [PMID: 15367005 DOI: 10.1063/1.1786925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
21
Higgins CJ, Chapman S. Collisional Energy Transfer between Hot Pyrazine and Cold CO:  A Classical Trajectory Study. J Phys Chem A 2004. [DOI: 10.1021/jp040140l] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
22
Seiser N, Kavita K, Flynn GW. Long Range Collisional Energy Transfer from Highly Vibrationally Excited Pyrazine to CO Bath Molecules:  Excitation of the v = 1 CO Vibrational Level. J Phys Chem A 2003. [DOI: 10.1021/jp0225626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
23
Curl RF, Tittel FK. 7  Tunable infrared laser spectroscopy. ACTA ACUST UNITED AC 2002. [DOI: 10.1039/b111194a] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
24
Gao YQ, Marcus RA. On the theory of the strange and unconventional isotopic effects in ozone formation. J Chem Phys 2002. [DOI: 10.1063/1.1415448] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
25
Yong Bae S, Young Kim H, Yang H, Park J. Collisional quenching of vibrationally excited methyl-substituted pyrazine and pyridine series by CO2. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)00519-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
26
Classical Trajectory Study of Energy Transfer in Pyrazine−CO Collisions. J Phys Chem A 2001. [DOI: 10.1021/jp003980i] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
27
Barker JR, Yoder LM, King KD. Vibrational Energy Transfer Modeling of Nonequilibrium Polyatomic Reaction Systems. J Phys Chem A 2001. [DOI: 10.1021/jp002077f] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
28
Sevy ET, Muyskens MA, Lin Z, Flynn GW. Competition between Photochemistry and Energy Transfer in Ultraviolet-Excited Diazabenzenes. 3. Photofragmentation and Collisional Quenching in Mixtures of 2-Methylpyrazine and Carbon Dioxide. J Phys Chem A 2000. [DOI: 10.1021/jp0007033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
29
Temperature dependence of vibrational energy transfer between vibrationally excited polyatomic molecules and bath gases. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)00815-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
30
Elioff MS, Sansom RL, Mullin AS. Vibrational Energy Gain in the ν2 Bending Mode of Water via Collisions with Hot Pyrazine (Evib = 37900 cm-1):  Insights into the Dynamics of Energy Flow. J Phys Chem A 2000. [DOI: 10.1021/jp001425a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
31
Sevy ET, Muyskens MA, Rubin SM, Flynn GW, Muckerman JT. Competition between photochemistry and energy transfer in ultraviolet-excited diazabenzenes. I. Photofragmentation studies of pyrazine at 248 nm and 266 nm. J Chem Phys 2000. [DOI: 10.1063/1.481157] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
32
Sevy ET, Michaels CA, Tapalian HC, Flynn GW. Competition between photochemistry and energy transfer in ultraviolet-excited diazabenzenes. II. Identifying the dominant energy donor for “supercollisions”. J Chem Phys 2000. [DOI: 10.1063/1.481158] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
33
Lenzer T, Luther K, Reihs K, Symonds AC. Collisional energy transfer probabilities of highly excited molecules from kinetically controlled selective ionization (KCSI). II. The collisional relaxation of toluene: P(E′,E) and moments of energy transfer for energies up to 50 000 cm−1. J Chem Phys 2000. [DOI: 10.1063/1.480958] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
34
Hold U, Lenzer T, Luther K, Reihs K, Symonds AC. Collisional energy transfer probabilities of highly excited molecules from kinetically controlled selective ionization (KCSI). I. The KCSI technique: Experimental approach for the determination of P(E′,E) in the quasicontinuous energy range. J Chem Phys 2000. [DOI: 10.1063/1.480957] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
35
Fay N, Luther K. Temperature Dependence of Collisional Deactivation of Highly Vibrationally Excited Biphenylene. Z PHYS CHEM 2000. [DOI: 10.1524/zpch.2000.214.6.839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
36
Sevy ET, Rubin SM, Lin Z, Flynn GW. Translational and rotational excitation of the CO[sub 2](00[sup 0]0) vibrationless state in the collisional quenching of highly vibrationally excited 2-methylpyrazine: Kinetics and dynamics of large energy transfers. J Chem Phys 2000. [DOI: 10.1063/1.1289247] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
37
Skinner DE, Miller WH. Application of the forward–backward initial value representation to molecular energy transfer. J Chem Phys 1999. [DOI: 10.1063/1.480444] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
38
Hou H, Huang Y, Gulding SJ, Rettner CT, Auerbach DJ, Wodtke AM. Direct multiquantum relaxation of highly vibrationally excited NO in collisions with O/Cu(111). J Chem Phys 1999. [DOI: 10.1063/1.479011] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
39
Hou H, Huang Y, Gulding SJ, Rettner CT, Auerbach DJ, Wodtke AM. Enhanced reactivity of highly vibrationally excited molecules on metal surfaces. Science 1999;284:1647-50. [PMID: 10356389 DOI: 10.1126/science.284.5420.1647] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
40
Collisional quenching of vibrationally excited azabenzenes by unexcited azabenzenes. Chem Phys Lett 1999. [DOI: 10.1016/s0009-2614(99)00256-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
41
Fraelich M, Elioff MS, Mullin AS. State-Resolved Studies of Collisional Quenching of Highly Vibrationally Excited Pyrazine by Water:  The Case of the Missing V → RT Supercollision Channel. J Phys Chem A 1998. [DOI: 10.1021/jp982608o] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
42
Wall MC, Mullin AS. “Supercollision” energy dependence: State-resolved energy transfer in collisions between highly vibrationally excited pyrazine (Evib=37 900 cm−1 and 40 900 cm−1) and CO2. J Chem Phys 1998. [DOI: 10.1063/1.476458] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA