1
|
Focke K, Jacob CR. Coupled-Cluster Density-Based Many-Body Expansion. J Phys Chem A 2023; 127:9139-9148. [PMID: 37871170 PMCID: PMC10626589 DOI: 10.1021/acs.jpca.3c04591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
While CCSD(T) is often considered the "gold standard" of computational chemistry, the scaling of its computational cost as N7 limits its applicability for large and complex molecular systems. In this work, we apply the density-based many-body expansion [ Int. J. Quantum Chem. 2020, 120, e26228] in combination with CCSD(T). The accuracy of this approach is assessed for neutral, protonated, and deprotonated water hexamers, as well as (H2O)16 and (H2O)17 clusters. For the neutral water clusters, we find that already with a density-based two-body expansion, we are able to approximate the supermolecular CCSD(T) energies within chemical accuracy (4 kJ/mol). This surpasses the accuracy that is achieved with a conventional, energy-based three-body expansion. We show that this accuracy can be maintained even when approximating the electron densities using Hartree-Fock instead of using coupled-cluster densities. The density-based many-body expansion thus offers a simple, resource-efficient, and highly parallelizable approach that makes CCSD(T)-quality calculations feasible where they would otherwise be prohibitively expensive.
Collapse
Affiliation(s)
- Kevin Focke
- Institute of Physical and
Theoretical Chemistry, Technische Universität
Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R. Jacob
- Institute of Physical and
Theoretical Chemistry, Technische Universität
Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
2
|
He N, Huang M, Evangelista FA. CO Inversion on a NaCl(100) Surface: A Multireference Quantum Embedding Study. J Phys Chem A 2023; 127:1975-1987. [PMID: 36799901 PMCID: PMC9986868 DOI: 10.1021/acs.jpca.2c05844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
We develop a multireference quantum embedding model to investigate a recent experimental observation of the isomerization of vibrationally excited CO molecules on a NaCl(100) surface [Science 2020, 367, 175-178]. To explore this mechanism, we built a reduced potential energy surface of CO interacting with NaCl(100) using a second-order multireference perturbation theory, modeling the adsorbate-surface interaction with our previously developed active space embedding theory (ASET). We considered an isolated CO molecule on NaCl(100) and a high-coverage CO monolayer (1/1), and for both we generated potential energy surfaces parametrized by the CO stretching, adsorption, and inversion coordinates. These surfaces are used to determine stationary points and adsorption energies and to perform a vibrational analysis of the states relevant to the inversion mechanism. We found that for near-equilibrium bond lengths, CO adsorbed in the C-down configuration is lower in energy than in the O-down configuration. Stretching of the C-O bond reverses the energetic order of these configurations, supporting the accepted isomerization mechanism. The vibrational constants obtained from these potential energy surfaces show a small (< 10 cm-1) blue- and red-shift for the C-down and O-down configurations, respectively, in agreement with experimental assignments and previous theoretical studies. Our vibrational analysis of the monolayer case suggests that the O-down configuration is energetically more stable than the C-down one beyond the 16th vibrational excited state of CO, a value slightly smaller than the one from quasi-classical trajectory simulations (22nd) and consistent with the experiment. Our analysis suggests that CO-CO interactions in the monolayer play an important role in stabilizing highly vibrationally excited states in the O-down configuration and reducing the barrier between the C-down and O-down geometries, therefore playing a crucial role in the inversion mechanism.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Sargent CT, Metcalf DP, Glick ZL, Borca CH, Sherrill CD. Benchmarking two-body contributions to crystal lattice energies and a range-dependent assessment of approximate methods. J Chem Phys 2023; 158:054112. [PMID: 36754814 DOI: 10.1063/5.0141872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Using the many-body expansion to predict crystal lattice energies (CLEs), a pleasantly parallel process, allows for flexibility in the choice of theoretical methods. Benchmark-level two-body contributions to CLEs of 23 molecular crystals have been computed using interaction energies of dimers with minimum inter-monomer separations (i.e., closest contact distances) up to 30 Å. In a search for ways to reduce the computational expense of calculating accurate CLEs, we have computed these two-body contributions with 15 different quantum chemical levels of theory and compared these energies to those computed with coupled-cluster in the complete basis set (CBS) limit. Interaction energies of the more distant dimers are easier to compute accurately and several of the methods tested are suitable as replacements for coupled-cluster through perturbative triples for all but the closest dimers. For our dataset, sub-kJ mol-1 accuracy can be obtained when calculating two-body interaction energies of dimers with separations shorter than 4 Å with coupled-cluster with single, double, and perturbative triple excitations/CBS and dimers with separations longer than 4 Å with MP2.5/aug-cc-pVDZ, among other schemes, reducing the number of dimers to be computed with coupled-cluster by as much as 98%.
Collapse
Affiliation(s)
- Caroline T Sargent
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Derek P Metcalf
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Zachary L Glick
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Carlos H Borca
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
4
|
Kumar A, DeGregorio N, Ricard T, Iyengar SS. Graph-Theoretic Molecular Fragmentation for Potential Surfaces Leads Naturally to a Tensor Network Form and Allows Accurate and Efficient Quantum Nuclear Dynamics. J Chem Theory Comput 2022; 18:7243-7259. [PMID: 36332133 DOI: 10.1021/acs.jctc.2c00484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Molecular fragmentation methods have revolutionized quantum chemistry. Here, we use a graph-theoretically generated molecular fragmentation method, to obtain accurate and efficient representations for multidimensional potential energy surfaces and the quantum time-evolution operator, which plays a critical role in quantum chemical dynamics. In doing so, we find that the graph-theoretic fragmentation approach naturally reduces the potential portion of the time-evolution operator into a tensor network that contains a stream of coupled lower-dimensional propagation steps to potentially achieve quantum dynamics with reduced complexity. Furthermore, the fragmentation approach used here has previously been shown to allow accurate and efficient computation of post-Hartree-Fock electronic potential energy surfaces, which in many cases has been shown to be at density functional theory cost. Thus, by combining the advantages of molecular fragmentation with the tensor network formalism, the approach yields an on-the-fly quantum dynamics scheme where both the electronic potential calculation and nuclear propagation portion are enormously simplified through a single stroke. The method is demonstrated by computing approximations to the propagator and to potential surfaces for a set of coupled nuclear dimensions within a protonated water wire problem exhibiting the Grotthuss mechanism of proton transport. In all cases, our approach has been shown to reduce the complexity of representing the quantum propagator, and by extension action of the propagator on an initial wavepacket, by several orders, with minimal loss in accuracy.
Collapse
Affiliation(s)
- Anup Kumar
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Nicole DeGregorio
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Timothy Ricard
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Zhu X, Iyengar SS. Graph Theoretic Molecular Fragmentation for Multidimensional Potential Energy Surfaces Yield an Adaptive and General Transfer Machine Learning Protocol. J Chem Theory Comput 2022; 18:5125-5144. [PMID: 35994592 DOI: 10.1021/acs.jctc.1c01241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over a series of publications we have introduced a graph-theoretic description for molecular fragmentation. Here, a system is divided into a set of nodes, or vertices, that are then connected through edges, faces, and higher-order simplexes to represent a collection of spatially overlapping and locally interacting subsystems. Each such subsystem is treated at two levels of electronic structure theory, and the result is used to construct many-body expansions that are then embedded within an ONIOM-scheme. These expansions converge rapidly with many-body order (or graphical rank) of subsystems and have been previously used for ab initio molecular dynamics (AIMD) calculations and for computing multidimensional potential energy surfaces. Specifically, in all these cases we have shown that CCSD and MP2 level AIMD trajectories and potential surfaces may be obtained at density functional theory cost. The approach has been demonstrated for gas-phase studies, for condensed phase electronic structure, and also for basis set extrapolation-based AIMD. Recently, this approach has also been used to derive new quantum-computing algorithms that enormously reduce the quantum circuit depth in a circuit-based computation of correlated electronic structure. In this publication, we introduce (a) a family of neural networks that act in parallel to represent, efficiently, the post-Hartree-Fock electronic structure energy contributions for all simplexes (fragments), and (b) a new k-means-based tessellation strategy to glean training data for high-dimensional molecular spaces and minimize the extent of training needed to construct this family of neural networks. The approach is particularly useful when coupled cluster accuracy is desired and when fragment sizes grow in order to capture nonlocal interactions accurately. The unique multidimensional k-means tessellation/clustering algorithm used to determine our training data for all fragments is shown to be extremely efficient and reduces the needed training to only 10% of data for all fragments to obtain accurate neural networks for each fragment. These fully connected dense neural networks are then used to extrapolate the potential energy surface for all molecular fragments, and these are then combined as per our graph-theoretic procedure to transfer the learning process to a full system energy for the entire AIMD trajectory at less than one-tenth the cost as compared to a regular fragmentation-based AIMD calculation.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington 47405, Indiana, United States
| | - Srinivasan S Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington 47405, Indiana, United States
| |
Collapse
|
6
|
Shao X, Mi W, Pavanello M. Density Embedding Method for Nanoscale Molecule-Metal Interfaces. J Phys Chem Lett 2022; 13:7147-7154. [PMID: 35901490 DOI: 10.1021/acs.jpclett.2c01424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we extend the applicability of standard Kohn-Sham DFT (KS-DFT) to model realistically sized molecule-metal interfaces where the metal slabs venture into the tens of nanometers in size. Employing state-of-the-art noninteracting kinetic energy functionals, we describe metallic subsystems with orbital-free DFT and combine their electronic structure with molecular subsystems computed at the KS-DFT level resulting in a multiscale subsystem DFT method. The method reproduces within a few millielectronvolts the binding energy difference of water and carbon dioxide molecules adsorbed on the top and hollow sites of an Al(111) surface compared to KS-DFT of the combined supersystem. It is also robust for Born-Oppenheimer molecular dynamics simulations. Very large system sizes are approached with standard computing resources thanks to a parallelization scheme that avoids accumulation of memory at the gather-scatter stage. The results as presented are encouraging and open the door to ab initio simulations of realistically sized, mesoscopic molecule-metal interfaces.
Collapse
Affiliation(s)
- Xuecheng Shao
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Wenhui Mi
- International Center for Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
| | - Michele Pavanello
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
7
|
Metcalf DP, Smith AJ, Glick ZL, Sherrill CD. Range-dependence of two-body intermolecular interactions and their energy components in molecular crystals. J Chem Phys 2022; 157:084503. [DOI: 10.1063/5.0103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Routinely assessing the stability of molecular crystals with high accuracy remains an open challenge in the computational sciences. The many-body expansion decomposes computation of the crystal lattice energy into an embarrassingly parallel collection of computations over molecular dimers, trimers, and so forth, making quantum chemistry techniques tractable for many crystals of small organic molecules. By examining the range-dependence of different types of energetic contributions to the crystal lattice energy, we can glean qualitative understanding of solid-state intermolecular interactions as well as practical, exploitable reductions in the number of computations required for accurate energies. Here, we assess the range-dependent character of two-body interactions of 24 small organic molecular crystals using the physically interpretable components from symmetry-adapted perturbation theory (electrostatics, exchange repulsion, induction/polarization, and London dispersion). We also examine correlations between the convergence rates of electrostatics and London dispersion terms with molecular dipole moments and polarizabilities, to provide guidance for estimating convergence rates in other molecular crystals.
Collapse
Affiliation(s)
- Derek P Metcalf
- Chemistry & Biochemistry, Georgia Institute of Technology, United States of America
| | | | - Zachary Lee Glick
- Chemistry and Biochemistry, Georgia Institute of Technology College of Sciences, United States of America
| | - C. David Sherrill
- School of Chemistry and Biochemistry, Georgia Institute of Technology College of Sciences, United States of America
| |
Collapse
|
8
|
Christlmaier EM, Kats D, Alavi A, Usvyat D. Full Configuration Interaction Quantum Monte Carlo treatment of fragments embedded in a periodic mean field. J Chem Phys 2022; 156:154107. [DOI: 10.1063/5.0084040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an embedded fragment approach for high-level quantum chemical calculations on local features in periodic systems. The fragment is defined as a set of localized orbitals (occupied and virtual) corresponding to a converged periodic Hartree-Fock solution. These orbitals serve as the basis for the in-fragment post-Hartree Fock treatment. The embedding field for the fragment, consisting of the Coulomb and exchange potential from the rest of the crystal, is included in the fragment's one-electron Hamiltonian. As an application of the embedded fragment approach we investigate the performanceof full configuration interaction quantum Monte Carlo (FCIQMC) with the adaptive shift. As the orbital choice we use the natural orbitals from the distinguishable cluster method with singles and doubles. FCIQMC is a stochastic approximation to the full CI method and can be routinely applied to much larger active spaces than the latter. This makes this method especially attractive in the context of open shell defects in crystals, where fragments of adequate size can be ratherlarge. As a test case we consider dissociation of a fluorine atom from a fluorographane surface. This process poses a challenge for high-level electronic structure models as both the static and dynamic correlations are essential here. Furthermore the active space for an adequate fragment (32 electrons in 173 orbitals) is already quite large even for FCIQMC. Despite this, FCIQMC delivers accurate dissociation and total energies.
Collapse
Affiliation(s)
| | - Daniel Kats
- Max-Planck-Institute for Solid State Research, Germany
| | - Ali Alavi
- Max-Planck-Institute for Solid State Research, Germany
| | - Denis Usvyat
- Institute of Chemistry, Humboldt University of Berlin, Germany
| |
Collapse
|
9
|
Abstract
Quantum embedding schemes are a promising way to extend multireference computations to large molecules with strong correlation effects localized on a small number of atoms. This work introduces a second-order active-space embedding theory [ASET(2)] which improves upon mean-field frozen embedding by treating fragment-environment interactions via an approximate canonical transformation. The canonical transformation employed in ASET(2) is formulated using the driven similarity renormalization group. The ASET(2) scheme is benchmarked on the N═N bond dissociation in pentyldiazene, the S0 to S1 excitation in 1-octene, and the interaction energy of the O2-benzene complex. The ASET(2) explicit treatment of fragment-environment interactions beyond the mean-field level generally improves the accuracy of embedded computations, and it becomes necessary to achieve an accurate description of excitation energies of 1-octene and the singlet-triplet gap of the O2-benzene complex.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
10
|
Mullan T, Maschio L, Saalfrank P, Usvyat D. Reaction barriers on non-conducting surfaces beyond periodic local MP2: Diffusion of hydrogen on \ce{\alpha-Al2O3}(0001) as a test case. J Chem Phys 2022; 156:074109. [DOI: 10.1063/5.0082805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Lorenzo Maschio
- Dipartimento di Chimica, Università degli Studi di Torino, Italy
| | - Peter Saalfrank
- Institut für Chemie, Universität Potsdam Institut für Chemie, Germany
| | - Denis Usvyat
- Institute of Chemistry, Humboldt University of Berlin, Germany
| |
Collapse
|
11
|
Liang Q, Yang J. Third-Order Many-Body Expansion of OSV-MP2 Wave Function for Low-Order Scaling Analytical Gradient Computation. J Chem Theory Comput 2021; 17:6841-6860. [PMID: 34704757 DOI: 10.1021/acs.jctc.1c00581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a many-body expansion (MBE) formulation and implementation for efficient computation of analytical energy gradients from the orbital-specific-virtual second-order Møllet-Plesset perturbation theory (OSV-MP2) based on our earlier work (Zhou et al. J. Chem. Theory Comput. 2020, 16, 196-210). The third-order MBE(3) expansion of OSV-MP2 amplitudes and density matrices was developed to adopt the orbital-specific clustering and long-range termination schemes, which avoids term-by-term differentiations of the MBE energy bodies. We achieve better efficiency by exploiting the algorithmic sparsity that allows us to prune out insignificant fitting integrals and OSV relaxations. With these approximations, the present implementation is benchmarked on a range of molecules that show an economic scaling in the linear and quadratic regimes for computing MBE(3)-OSV-MP2 amplitude and gradient equations, respectively, and yields normal accuracy comparable to the original OSV-MP2 results. The MPI-3-based parallelism through shared memory one-sided communication is further developed for improving parallel scalability and memory accessibility by sorting the MBE(3) orbital clusters into independent tasks that are distributed on multiple processes across many nodes, supporting both global and local data locations in which selected MBE(3)-OSV-MP2 intermediates of different sizes are distinguished and accordingly placed. The accuracy and efficiency level of our MBE(3)-OSV-MP2 analytical gradient implementation is finally illustrated in two applications: we show that the subtle coordination structure differences of mechanically interlocked Cu-catenane complexes can be distinguished when tuning ligand lengths; and the porphycene molecular dynamics reveals the emergence of the vibrational signature arising from softened N-H stretching associated with hydrogen transfer, using an MP2 level of electron correlation and classical nuclei for the first time.
Collapse
Affiliation(s)
- Qiujiang Liang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| |
Collapse
|
12
|
Kumar A, DeGregorio N, Iyengar SS. Graph-Theory-Based Molecular Fragmentation for Efficient and Accurate Potential Surface Calculations in Multiple Dimensions. J Chem Theory Comput 2021; 17:6671-6690. [PMID: 34623129 DOI: 10.1021/acs.jctc.1c00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present a multitopology molecular fragmentation approach, based on graph theory, to calculate multidimensional potential energy surfaces in agreement with post-Hartree-Fock levels of theory but at the density functional theory cost. A molecular assembly is coarse-grained into a set of graph-theoretic nodes that are then connected with edges to represent a collection of locally interacting subsystems up to an arbitrary order. Each of the subsystems is treated at two levels of electronic structure theory, the result being used to construct many-body expansions that are embedded within an ONIOM scheme. These expansions converge rapidly with the many-body order (or graphical rank) of subsystems and capture many-body interactions accurately and efficiently. However, multiple graphs, and hence multiple fragmentation topologies, may be defined in molecular configuration space that may arise during conformational sampling or from reactive, bond breaking and bond formation, events. Obtaining the resultant potential surfaces is an exponential scaling proposition, given the number of electronic structure computations needed. We utilize a family of graph-theoretic representations within a variational scheme to obtain multidimensional potential surfaces at a reduced cost. The fast convergence of the graph-theoretic expansion with increasing order of many-body interactions alleviates the exponential scaling cost for computing potential surfaces, with the need to only use molecular fragments that contain a fewer number of quantum nuclear degrees of freedom compared to the full system. This is because the dimensionality of the conformational space sampled by the fragment subsystems is much smaller than the full molecular configurational space. Additionally, we also introduce a multidimensional clustering algorithm, based on physically defined criteria, to reduce the number of energy calculations by orders of magnitude. The molecular systems benchmarked include coupled proton motion in protonated water wires. The potential energy surfaces and multidimensional nuclear eigenstates obtained are shown to be in very good agreement with those from explicit post-Hartree-Fock calculations that become prohibitive as the number of quantum nuclear dimensions grows. The developments here provide a rigorous and efficient alternative to this important chemical physics problem.
Collapse
Affiliation(s)
- Anup Kumar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Nicole DeGregorio
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
13
|
Hellmers J, König C. A unified and flexible formulation of molecular fragmentation schemes. J Chem Phys 2021; 155:164105. [PMID: 34717347 DOI: 10.1063/5.0059598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present a flexible formulation for energy-based molecular fragmentation schemes. This framework does not only incorporate the majority of existing fragmentation expansions but also allows for flexible formulation of novel schemes. We further illustrate its application in multi-level approaches and for electronic interaction energies. For the examples of small water clusters, a small protein, and protein-protein interaction energies, we show how this flexible setup can be exploited to generate a well-suited multi-level fragmentation expansion for the given case. With such a setup, we reproduce the electronic protein-protein interaction energy of ten different structures of a neurotensin and an extracellular loop of its receptor with a mean absolute deviation to the respective super-system calculations below 1 kJ/mol.
Collapse
Affiliation(s)
- Janine Hellmers
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Hannover, Germany
| | - Carolin König
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
14
|
Abraham V, Mayhall NJ. Cluster many-body expansion: A many-body expansion of the electron correlation energy about a cluster mean field reference. J Chem Phys 2021; 155:054101. [PMID: 34364343 DOI: 10.1063/5.0057752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The many-body expansion (MBE) is an efficient tool that has a long history of use for calculating interaction energies, binding energies, lattice energies, and so on. In the past, applications of MBE to correlation energy have been unfeasible for large systems, but recent improvements to computing resources have sparked renewed interest in capturing the correlation energy using the generalized nth order Bethe-Goldstone equation. In this work, we extend this approach, originally proposed for a Slater determinant, to a tensor product state (TPS) based wavefunction. By partitioning the active space into smaller orbital clusters, our approach starts from a cluster mean field reference TPS configuration and includes the correlation contribution of the excited TPSs using the MBE. This method, named cluster MBE (cMBE), improves the convergence of MBE at lower orders compared to directly doing a block-based MBE from a RHF reference. We present numerical results for strongly correlated systems, such as the one- and two-dimensional Hubbard models and the chromium dimer. The performance of the cMBE method is also tested by partitioning the extended π space of several large π-conjugated systems, including a graphene nano-sheet with a very large active space of 114 electrons in 114 orbitals, which would require 1066 determinants for the exact FCI solution.
Collapse
Affiliation(s)
- Vibin Abraham
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, USA
| | | |
Collapse
|
15
|
Schmitt-Monreal D, Jacob CR. Density-Based Many-Body Expansion as an Efficient and Accurate Quantum-Chemical Fragmentation Method: Application to Water Clusters. J Chem Theory Comput 2021; 17:4144-4156. [PMID: 34196558 DOI: 10.1021/acs.jctc.1c00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fragmentation methods based on the many-body expansion offer an attractive approach for the quantum-chemical treatment of large molecular systems, such as molecular clusters and crystals. Conventionally, the many-body expansion is performed for the total energy, but such an energy-based many-body expansion often suffers from a slow convergence with respect to the expansion order. For systems that show strong polarization effects such as water clusters, this can render the energy-based many-body expansion infeasible. Here, we establish a density-based many-body expansion as a promising alternative approach. By performing the many-body expansion for the electron density instead of the total energy and inserting the resulting total electron density into the total energy functional of density functional theory, one can derive a density-based energy correction, which in principle accounts for all higher-order polarization effects. Here, we systematically assess the accuracy of such a density-based many-body expansion for test sets of water clusters. We show that already a density-based two-body expansion is able to reproduce interaction energies per fragment within chemical accuracy and is able to accurately predict the energetic ordering as well as the relative interaction energies of different isomers of water clusters.
Collapse
Affiliation(s)
- Daniel Schmitt-Monreal
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| |
Collapse
|
16
|
Ghosh S, Neese F, Izsák R, Bistoni G. Fragment-Based Local Coupled Cluster Embedding Approach for the Quantification and Analysis of Noncovalent Interactions: Exploring the Many-Body Expansion of the Local Coupled Cluster Energy. J Chem Theory Comput 2021; 17:3348-3359. [PMID: 34037397 PMCID: PMC8190956 DOI: 10.1021/acs.jctc.1c00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 11/30/2022]
Abstract
Herein, we introduce a fragment-based local coupled cluster embedding approach for the accurate quantification and analysis of noncovalent interactions in molecular aggregates. Our scheme combines two different expansions of the domain-based local pair natural orbital coupled cluster (DLPNO-CCSD(T)) energy: the many-body expansion (MBE) and the local energy decomposition (LED). The low-order terms in the MBE are initially computed in the presence of an environment that is treated at a low level of theory. Then, LED is used to decompose the energy of each term in the embedded MBE into additive fragment and fragment-pairwise contributions. This information is used to quantify the total energy of the system while providing at the same time in-depth insights into the nature and cooperativity of noncovalent interactions. Two different approaches are introduced and tested, in which the environment is treated at different levels of theory: the local coupled cluster in the Hartree-Fock (LCC-in-HF) method, in which the environment is treated at the HF level; and the electrostatically embedded local coupled cluster method (LCC-in-EE), in which the environment is replaced by point charges. Both schemes are designed to preserve as much as possible the accuracy of the parent local coupled cluster method for total energies, while being embarrassingly parallel and less memory intensive. These schemes appear to be particularly promising for the study of large and complex molecular aggregates at the coupled cluster level, such as condensed phase systems and protein-ligand interactions.
Collapse
Affiliation(s)
- Soumen Ghosh
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Nguyen ALP, Mason TG, Freeman BD, Izgorodina EI. Prediction of lattice energy of benzene crystals: A robust theoretical approach. J Comput Chem 2021; 42:248-260. [PMID: 33231872 DOI: 10.1002/jcc.26452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023]
Abstract
We present an inexpensive and robust theoretical approach based on the fragment molecular orbital methodology and the spin-ratio scaled second-order Møller-Plesset perturbation theory to predict the lattice energy of benzene crystals within 2 kJ⋅mol-1 . Inspired by the Harrison method to estimate the Madelung constant, the proposed approach calculates the lattice energy as a sum of two- and three-body interaction energies between a reference molecule and the surrounding molecules arranged in a sphere. The lattice energy converges rapidly at a radius of 13 Å. Adding the corrections to account for a higher correlated level of theory and basis set superposition for the Hartree Fock (HF) level produced a lattice energy of -57.5 kJ⋅mol-1 for the benzene crystal structure at 138 K. This estimate is within 1.6 kJ⋅mol-1 off the best theoretical prediction of -55.9 kJ⋅mol-1 . We applied this approach to calculate lattice energies of the crystal structures of phase I and phase II-polymorphs of benzene-observed at a higher temperature of 295 K. The stability of these polymorphs was correctly predicted, with phase II being energetically preferred by 3.7 kJ⋅mol-1 over phase I. The proposed approach gives a tremendous potential to predict stability of other molecular crystal polymorphs.
Collapse
Affiliation(s)
- Anh L P Nguyen
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Thomas G Mason
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Benny D Freeman
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
18
|
Lau BTG, Knizia G, Berkelbach TC. Regional Embedding Enables High-Level Quantum Chemistry for Surface Science. J Phys Chem Lett 2021; 12:1104-1109. [PMID: 33475362 DOI: 10.1021/acs.jpclett.0c03274] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Compared to common density functionals, ab initio wave function methods can provide greater reliability and accuracy, which could prove useful when modeling adsorbates or defects of otherwise periodic systems. However, the breaking of translational symmetry necessitates large supercells that are often prohibitive for correlated wave function methods. As an alternative, this paper introduces the regional embedding approach, which enables correlated wave function treatments of only a target fragment of interest through small, fragment-localized orbital spaces constructed using a simple overlap criterion. Applications to the adsorption of water on lithium hydride, hexagonal boron nitride, and graphene substrates show that regional embedding combined with focal-point corrections can provide converged CCSD(T) (coupled-cluster) adsorption energies with very small fragment sizes.
Collapse
Affiliation(s)
- Bryan T G Lau
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Gerald Knizia
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Timothy C Berkelbach
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
19
|
Muravyev NV, Monogarov KA, Melnikov IN, Pivkina AN, Kiselev VG. Learning to fly: thermochemistry of energetic materials by modified thermogravimetric analysis and highly accurate quantum chemical calculations. Phys Chem Chem Phys 2021; 23:15522-15542. [PMID: 34286759 DOI: 10.1039/d1cp02201f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The standard state enthalpy of formation and the enthalpy of sublimation are essential thermochemical parameters determining the performance and application prospects of energetic materials (EM). Direct experimental measurements of these properties are complicated by low volatility and high heat release in bomb calorimetry experiments. As a result, the uncertainties in the reported enthalpies of formation for a number of even well-known CHNO-containing compounds might amount up to tens kJ mol-1, while for some novel high-nitrogen molecules they reach even hundreds of kJ mol-1. The present study reports a facile approach to determining the solid-state formation enthalpies comprised of complementary high-level quantum chemical calculations of the gas-phase thermochemistry and advanced thermal analysis techniques yielding sublimation enthalpies. The thermogravimetric procedure for the measurement of sublimation enthalpy was modified by using low external pressures (down to 0.2 Pa). This allows for observing sublimation/vaporization instead of thermal decomposition of the compounds studied. Extensive benchmarking on nonenergetic and energetic compounds reveals the average and maximal absolute errors of the sublimation enthalpies of 3.3 and 11.0 kJ mol-1, respectively. The comparison of the results with those obtained from the widely used Trouton-Williams empirical equation shows that the latter underestimates the sublimation enthalpy up to 140 kJ mol-1. Therefore, we performed a reparametrization of the latter equation with simple chemical descriptors that reduces the mean error down to 30 kJ mol-1. Highly accurate multi-level procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach were used to calculate theoretically the gas-phase formation enthalpies. In several cases, the DLPNO-CCSD(T) enthalpies of isodesmic reactions were also employed to obtain the gas-phase thermochemistry for medium-sized important EMs. Combining the obtained thermochemical properties, we determined the solid-state enthalpies of formation for nearly 60 species containing various important explosophoric groups, from common nitroaromatics, nitroethers, and nitramines to novel nitrogen-rich heterocyclic species (e.g., the derivatives of pyrazole, tetrazole, furoxan, etc.). The large-scale benchmarking against the available experimental solid-state enthalpies of formation yielded the maximal inaccuracy of the proposed method of 25 kJ mol-1.
Collapse
Affiliation(s)
- Nikita V Muravyev
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Konstantin A Monogarov
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Igor N Melnikov
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Alla N Pivkina
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Vitaly G Kiselev
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia. and Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia and Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| |
Collapse
|
20
|
Chen B, Xu X. XO-PBC: An Accurate and Efficient Method for Molecular Crystals. J Chem Theory Comput 2020; 16:4271-4285. [PMID: 32456429 DOI: 10.1021/acs.jctc.0c00232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we propose the XO-PBC method, which combines the eXtended ONIOM method (XO) with the periodic boundary condition (PBC) for the description of molecular crystals. XO-PBC tries to embed a finite cluster cut out from the solid into the periodic environment, making it feasible to employ advanced molecular quantum chemistry methods, which are usually prohibitively expensive for direct PBC calculations. In particular, XO-PBC utilizes the results from force calculations to design the scheme to fragment the molecule when crystals are made of large molecules and to select cluster model systems automatically consisting of dimer up to tetramer interactions for embedding. By applying an appropriate theory to each model, a satisfactory accuracy for the system under study is ensured, while a high efficiency is achieved with massively parallel computing by distributing model systems onto different processors. A comparison of the XO-PBC calculations with the conventional direct PBC calculations at the B3LYP level demonstrates its accuracy at substantially low cost for the description of molecular crystals. The usefulness of the XO-PBC method is further exemplified, showing that XO-PBC is able to predict the lattice energies of various types of molecular crystals within chemical accuracy (<4 kJ/mol) when the doubly hybrid density functional XYG3 is used as the target high level and the periodic PBE as the basic low level. The XO-PBC method provides a general protocol that brings the great predictive power of advanced electronic structure methods from molecular systems to the extended solids.
Collapse
Affiliation(s)
- Bozhu Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
21
|
Ricard TC, Iyengar SS. Efficient and Accurate Approach To Estimate Hybrid Functional and Large Basis-Set Contributions to Condensed-Phase Systems and Molecule–Surface Interactions. J Chem Theory Comput 2020; 16:4790-4812. [DOI: 10.1021/acs.jctc.9b01089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Timothy C. Ricard
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S. Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
22
|
Červinka C, Štejfa V. Sublimation Properties of α,ω-Diamines Revisited from First-Principles Calculations. Chemphyschem 2020; 21:1184-1194. [PMID: 32243713 DOI: 10.1002/cphc.202000108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/02/2020] [Indexed: 11/06/2022]
Abstract
Sublimation enthalpies of alkane-α,ω-diamines exhibit an odd-even pattern within their homologous series. First-principles calculations coupled with the quasi-harmonic approximation for crystals and with the conformation mixing model for the ideal gas are used to explain this phenomenon from the theoretical point of view. Crystals of the odd and even alkane-α,ω-diamines distinctly differ in their packing motifs. However, first-principles calculations indicate that it is a delicate interplay of the cohesive forces, phonons, molecular vibrations and conformational equilibrium which governs the odd-even pattern of the sublimation enthalpies within the homologous series. High molecular flexibility of the alkane-α,ω-diamines predetermines higher sensitivity of the computational model to the quality of the optimized geometries and relative conformational energies. Performance of high-throughput computational methods, such as the density functional tight binding (DFTB, GFN2-xTB) and the explicitly correlated dispersion-corrected Møller-Plesset perturbative method (MP2C-F12), are benchmarked against the consistent state-of-the-art calculations of conformational energies and interaction energies, respectively.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Vojtěch Štejfa
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
23
|
Høyvik IM. The spectrum of the atomic orbital overlap matrix and the locality of the virtual electronic density matrix. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1765034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ida-Marie Høyvik
- Department of Chemistry, The Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
24
|
Voronin AP, Surov AO, Churakov AV, Parashchuk OD, Rykounov AA, Vener MV. Combined X-ray Crystallographic, IR/Raman Spectroscopic, and Periodic DFT Investigations of New Multicomponent Crystalline Forms of Anthelmintic Drugs: A Case Study of Carbendazim Maleate. Molecules 2020; 25:E2386. [PMID: 32455564 PMCID: PMC7287603 DOI: 10.3390/molecules25102386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Synthesis of multicomponent solid forms is an important method of modifying and fine-tuning the most critical physicochemical properties of drug compounds. The design of new multicomponent pharmaceutical materials requires reliable information about the supramolecular arrangement of molecules and detailed description of the intermolecular interactions in the crystal structure. It implies the use of a combination of different experimental and theoretical investigation methods. Organic salts present new challenges for those who develop theoretical approaches describing the structure, spectral properties, and lattice energy Elatt. These crystals consist of closed-shell organic ions interacting through relatively strong hydrogen bonds, which leads to Elatt > 200 kJ/mol. Some technical problems that a user of periodic (solid-state) density functional theory (DFT) programs encounters when calculating the properties of these crystals still remain unsolved, for example, the influence of cell parameter optimization on the Elatt value, wave numbers, relative intensity of Raman-active vibrations in the low-frequency region, etc. In this work, various properties of a new two-component carbendazim maleate crystal were experimentally investigated, and the applicability of different DFT functionals and empirical Grimme corrections to the description of the obtained structural and spectroscopic properties was tested. Based on this, practical recommendations were developed for further theoretical studies of multicomponent organic pharmaceutical crystals.
Collapse
Affiliation(s)
- Alexander P. Voronin
- Department of Physical Chemistry of Drugs, G.A. Krestov Institute of Solution Chemistry of RAS, 153045 Ivanovo, Russia; (A.P.V.); (A.O.S.)
| | - Artem O. Surov
- Department of Physical Chemistry of Drugs, G.A. Krestov Institute of Solution Chemistry of RAS, 153045 Ivanovo, Russia; (A.P.V.); (A.O.S.)
| | - Andrei V. Churakov
- Department of Crystal Chemistry and X-ray Diffraction, N.S. Kurnakov Institute of General and Inorganic Chemistry of RAS, 119991 Moscow, Russia;
| | - Olga D. Parashchuk
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Alexey A. Rykounov
- Theoretical Department, FSUE “RFNC-VNIITF Named after Academ. E.I. Zababakhin”, 456770 Snezhinsk, Russia;
| | - Mikhail V. Vener
- Department of Quantum Chemistry, D. Mendeleev University of Chemical Technology, 125047 Moscow, Russia
| |
Collapse
|
25
|
He N, Evangelista FA. A zeroth-order active-space frozen-orbital embedding scheme for multireference calculations. J Chem Phys 2020; 152:094107. [PMID: 33480706 DOI: 10.1063/1.5142481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multireference computations of large-scale chemical systems are typically limited by the computational cost of quantum chemistry methods. In this work, we develop a zeroth-order active space embedding theory [ASET(0)], a simple and automatic approach for embedding any multireference dynamical correlation method based on a frozen-orbital treatment of the environment. ASET(0) is combined with the second-order multireference driven similarity renormalization group and tested on several benchmark problems, including the excitation energy of 1-octene and bond-breaking in ethane and pentyldiazene. Finally, we apply ASET(0) to study the singlet-triplet gap of p-benzyne and 9,10-anthracyne diradicals adsorbed on a NaCl surface. Our results show that despite its simplicity, ASET(0) is a powerful and sufficiently accurate embedding scheme applicable when the coupling between the fragment and the environment is in the weak to medium regime.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry, Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A Evangelista
- Department of Chemistry, Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
26
|
Jones LO, Mosquera MA, Schatz GC, Ratner MA. Embedding Methods for Quantum Chemistry: Applications from Materials to Life Sciences. J Am Chem Soc 2020; 142:3281-3295. [PMID: 31986877 DOI: 10.1021/jacs.9b10780] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Quantum mechanical embedding methods hold the promise to transform not just the way calculations are performed, but to significantly reduce computational costs and improve scaling for macro-molecular systems containing hundreds if not thousands of atoms. The field of embedding has grown increasingly broad with many approaches of different intersecting flavors. In this perspective, we lay out the methods into two streams: QM:MM and QM:QM, showcasing the advantages and disadvantages of both. We provide a review of the literature, the underpinning theories including our contributions, and we highlight current applications with select examples spanning both materials and life sciences. We conclude with prospects and future outlook on embedding, and our view on the use of universal test case scenarios for cross-comparisons of the many available (and future) embedding theories.
Collapse
Affiliation(s)
- Leighton O Jones
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Martín A Mosquera
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - George C Schatz
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Mark A Ratner
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
27
|
Veccham SP, Lee J, Head-Gordon M. Making many-body interactions nearly pairwise additive: The polarized many-body expansion approach. J Chem Phys 2019; 151:194101. [DOI: 10.1063/1.5125802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Srimukh Prasad Veccham
- Department of Chemistry, University of California, Berkeley, California 94720 USA, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Joonho Lee
- Department of Chemistry, University of California, Berkeley, California 94720 USA, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720 USA, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
28
|
Abstract
Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersystem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and therefore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial "free lunch" in quantum chemistry, with the entrée being high-level calculations on very large systems. While fragment-based quantum chemistry can count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges are highlighted in this Perspective.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
29
|
Brandenburg JG, Zen A, Alfè D, Michaelides A. Interaction between water and carbon nanostructures: How good are current density functional approximations? J Chem Phys 2019; 151:164702. [DOI: 10.1063/1.5121370] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jan Gerit Brandenburg
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 205A, 69120 Heidelberg, Germany
| | - Andrea Zen
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
| | - Dario Alfè
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
- Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Monte S. Angelo, I-80126 Napoli, Italy
| | - Angelos Michaelides
- Thomas Young Centre and London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
30
|
Borca CH, Bakr BW, Burns LA, Sherrill CD. CrystaLattE: Automated computation of lattice energies of organic crystals exploiting the many-body expansion to achieve dual-level parallelism. J Chem Phys 2019; 151:144103. [PMID: 31615262 DOI: 10.1063/1.5120520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We present an algorithm to compute the lattice energies of molecular crystals based on the many-body cluster expansion. The required computations on dimers, trimers, etc., within the crystal are independent of each other, leading to a naturally parallel approach. The algorithm exploits the long-range three-dimensional periodic order of crystals to automatically detect and avoid redundant or unnecessary computations. For this purpose, Coulomb-matrix descriptors from machine learning applications are found to be efficient in determining whether two N-mers are identical. The algorithm is implemented as an open-source Python program, CrystaLattE, that uses some of the features of the Quantum Chemistry Common Driver and Databases library. CrystaLattE is initially interfaced with the quantum chemistry package Psi4. With CrystaLattE, we have applied the fast, dispersion-corrected Hartree-Fock method HF-3c to the lattice energy of crystalline benzene. Including all 73 symmetry-unique dimers and 7130 symmetry-unique trimers that can be formed from molecules within a 15 Å cutoff from a central reference monomer, HF-3c plus an Axilrod-Teller-Muto estimate of three-body dispersion exhibits an error of only -1.0 kJ mol-1 vs the estimated 0 K experimental lattice energy of -55.3 ± 2.2 kJ mol-1. The convergence of the HF-3c two- and three-body contributions to the lattice energy as a function of intermonomer distance is examined.
Collapse
Affiliation(s)
- Carlos H Borca
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Brandon W Bakr
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Lori A Burns
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - C David Sherrill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
31
|
Affiliation(s)
- Ida-Marie Høyvik
- Department of Chemistry, The Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
32
|
Mihm TN, McIsaac AR, Shepherd JJ. An optimized twist angle to find the twist-averaged correlation energy applied to the uniform electron gas. J Chem Phys 2019; 150:191101. [PMID: 31117769 DOI: 10.1063/1.5091445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We explore an alternative to twist averaging in order to obtain more cost-effective and accurate extrapolations to the thermodynamic limit (TDL) for coupled cluster doubles (CCD) calculations. We seek a single twist angle to perform calculations at, instead of integrating over many random points or a grid. We introduce the concept of connectivity, a quantity derived from the nonzero four-index integrals in an MP2 calculation. This allows us to find a special twist angle that provides appropriate connectivity in the energy equation, which yields results comparable to full twist averaging. This special twist angle effectively makes the finite electron number CCD calculation represent the TDL more accurately, reducing the cost of twist-averaged CCD over Ns twist angles from Ns CCD calculations to Ns MP2 calculations plus one CCD calculation.
Collapse
Affiliation(s)
- Tina N Mihm
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1002, USA
| | - Alexandra R McIsaac
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James J Shepherd
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1002, USA
| |
Collapse
|
33
|
Teuteberg TL, Eckhoff M, Mata RA. A full additive QM/MM scheme for the computation of molecular crystals with extension to many-body expansions. J Chem Phys 2019; 150:154118. [PMID: 31005074 DOI: 10.1063/1.5080427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An additive quantum mechanics/molecular mechanics (QM/MM) model for the theoretical investigation of molecular crystals (AC-QM/MM) is presented. At the one-body level, a single molecule is chosen as the QM region. The MM region around it consists of a finite cluster of explicit MM atoms, represented by point charges and Lennard-Jones potentials, with additional background charges to mimic periodic electrostatics. Cluster charges are QM-derived and calculated self-consistently to ensure a polarizable embedding. We have also considered the extension to many-body QM corrections, calculating the interactions of a central molecule to neighboring units in the crystal. Full gradient expressions have been derived, also including symmetry information. The scheme allows for the calculation of molecular properties as well as unconstrained optimizations of the molecular geometry and cell parameters with respect to the lattice energy. Benchmarking the approach with the X23 reference set confirms the convergence pattern of the many-body extension although a comparison to plane-wave density functional theory reveals a systematic overestimation of cohesive energies by 6-16 kJ mol-1. While the scheme primarily aims to provide an inexpensive and flexible way to model a molecule in a crystal environment, it can also be used to reach highly accurate cohesive energies by the straightforward application of wave function correlated approaches. Calculations with local coupled cluster with singles, doubles, and perturbative triples, albeit limited to numerical gradients, show an impressive agreement with experimental estimates for small molecular crystals.
Collapse
Affiliation(s)
- Thorsten L Teuteberg
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstraße 6, Göttingen D-37077, Germany
| | - Marco Eckhoff
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstraße 6, Göttingen D-37077, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstraße 6, Göttingen D-37077, Germany
| |
Collapse
|
34
|
Al-Hamdani YS, Tkatchenko A. Understanding non-covalent interactions in larger molecular complexes from first principles. J Chem Phys 2019; 150:010901. [PMID: 30621423 PMCID: PMC6910608 DOI: 10.1063/1.5075487] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
Non-covalent interactions pervade all matter and play a fundamental role in layered materials, biological systems, and large molecular complexes. Despite this, our accumulated understanding of non-covalent interactions to date has been mainly developed in the tens-of-atoms molecular regime. This falls considerably short of the scales at which we would like to understand energy trends, structural properties, and temperature dependencies in materials where non-covalent interactions have an appreciable role. However, as more reference information is obtained beyond moderately sized molecular systems, our understanding is improving and we stand to gain pertinent insights by tackling more complex systems, such as supramolecular complexes, molecular crystals, and other soft materials. In addition, accurate reference information is needed to provide the drive for extending the predictive power of more efficient workhorse methods, such as density functional approximations that also approximate van der Waals dispersion interactions. In this perspective, we discuss the first-principles approaches that have been used to obtain reference interaction energies for beyond modestly sized molecular complexes. The methods include quantum Monte Carlo, symmetry-adapted perturbation theory, non-canonical coupled cluster theory, and approaches based on the random-phase approximation. By considering the approximations that underpin each method, the most accurate theoretical references for supramolecular complexes and molecular crystals to date are ascertained. With these, we also assess a handful of widely used exchange-correlation functionals in density functional theory. The discussion culminates in a framework for putting into perspective the accuracy of high-level wavefunction-based methods and identifying future challenges.
Collapse
Affiliation(s)
- Yasmine S Al-Hamdani
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Alexandre Tkatchenko
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
35
|
Červinka C, Beran GJO. Towards reliable ab initio sublimation pressures for organic molecular crystals - are we there yet? Phys Chem Chem Phys 2019; 21:14799-14810. [PMID: 31225538 DOI: 10.1039/c9cp01572h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Knowledge of molecular crystal sublimation equilibrium data is vital in many industrial processes, but this data can be difficult to measure experimentally for low-volatility species. Theoretical prediction of sublimation pressures could provide a useful supplement to experiment, but the exponential temperature dependence of sublimation (or any saturated vapor) pressure curve makes this challenging. An uncertainty of only a few percent in the sublimation enthalpy or entropy can propagate to an error in the sublimation pressure exceeding several orders of magnitude for a given temperature interval. Despite this fundamental difficulty, this paper performs some of the first ab initio predictions of sublimation pressure curves. Four simple molecular crystals (ethane, methanol, benzene, and imidazole) have been selected for a case study showing the currently achievable accuracy of quantum chemistry calculations. Fragment-based ab initio techniques and the quasi-harmonic approximation are used for calculations of cohesive and phonon properties of the crystals, while the vapor phase is treated by the ideal gas model. Ab initio sublimation pressure curves for model compounds are compared against their experimental counterparts. The computational uncertainties are estimated, weak points of the computational methodology are identified, and further improvements are proposed.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
| | - Gregory J O Beran
- Department of Chemistry, University of California, Riverside, California 92521, USA
| |
Collapse
|
36
|
Caldeweyher E, Brandenburg JG. Simplified DFT methods for consistent structures and energies of large systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:213001. [PMID: 29633964 DOI: 10.1088/1361-648x/aabcfb] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Kohn-Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree-Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.
Collapse
Affiliation(s)
- Eike Caldeweyher
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | | |
Collapse
|
37
|
Alessio M, Bischoff FA, Sauer J. Chemically accurate adsorption energies for methane and ethane monolayers on the MgO(001) surface. Phys Chem Chem Phys 2018; 20:9760-9769. [PMID: 29334088 DOI: 10.1039/c7cp08083b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hybrid QM:QM method that combines MP2 as high-level method on cluster models with density functional theory (PBE+D2) as low-level method on periodic models is applied to adsorption of methane and ethane on the MgO(001) surface for which reliable experimental desorption enthalpies are available. Two coverages are considered, monolayer (every second Mg2+ ion occupied) and one quarter coverage (one of eight Mg2+ ions occupied). Structure optimizations are performed at the hybrid MP2:(PBE+D2) level, with the MP2 energies and forces counterpoise corrected for basis set superposition error and extrapolated to the complete basis set limit. For the MP2 calculations on the adsorbate monolayer a two-body expansion of the lateral molecule-molecule interactions is applied. Higher order correlation effects are evaluated at the hybrid MP2:(PBE+D2) equilibrium structures as coupled cluster [CCSD(T)] - MP2 differences adopting smaller basis sets. The final adsorption energies obtained for monolayer coverage are -14.0 ± 1.0 and -23.3 ± 0.6 kJ mol-1 for CH4·MgO(001) and C2H6·MgO(001), respectively. They agree within 1 kJ mol-1 - well within chemical accuracy limits - with reference energies of -15.0 ± 0.6 and -24.4 ± 0.6 kJ mol-1, respectively. The latter have been derived from measured desorption enthalpy barriers, taking zero-point vibrational energy (ZPVE) and thermal enthalpy contributions into account.
Collapse
Affiliation(s)
- Maristella Alessio
- Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
| | | | | |
Collapse
|
38
|
Abstract
Computational approaches based on the fundamental laws of quantum mechanics are now integral to almost all materials design initiatives in academia and industry. If computational materials science is genuinely going to deliver on its promises, then an electronic structure method with consistently high accuracy is urgently needed. We show that, thanks to recent algorithmic advances and the strategy developed in our manuscript, quantum Monte Carlo yields extremely accurate predictions for the lattice energies of materials at a surprisingly modest computational cost. It is thus no longer a technique that requires a world-leading computational facility to obtain meaningful results. While we focus on molecular crystals, the significance of our findings extends to all classes of materials. Computer simulation plays a central role in modern-day materials science. The utility of a given computational approach depends largely on the balance it provides between accuracy and computational cost. Molecular crystals are a class of materials of great technological importance which are challenging for even the most sophisticated ab initio electronic structure theories to accurately describe. This is partly because they are held together by a balance of weak intermolecular forces but also because the primitive cells of molecular crystals are often substantially larger than those of atomic solids. Here, we demonstrate that diffusion quantum Monte Carlo (DMC) delivers subchemical accuracy for a diverse set of molecular crystals at a surprisingly moderate computational cost. As such, we anticipate that DMC can play an important role in understanding and predicting the properties of a large number of molecular crystals, including those built from relatively large molecules which are far beyond reach of other high-accuracy methods.
Collapse
|
39
|
Usvyat D, Maschio L, Schütz M. Periodic and fragment models based on the local correlation approach. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Denis Usvyat
- Institut für ChemieHumboldt‐Universität zu BerlinBerlinGermany
| | - Lorenzo Maschio
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces) CentreUniversità di TorinoTorinoItaly
| | - Martin Schütz
- Institut für ChemieHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
40
|
Sæther S, Kjærgaard T, Koch H, Høyvik IM. Density-Based Multilevel Hartree–Fock Model. J Chem Theory Comput 2017; 13:5282-5290. [DOI: 10.1021/acs.jctc.7b00689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Sæther
- Department
of Chemistry, The Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Thomas Kjærgaard
- qLEAP
Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Henrik Koch
- Department
of Chemistry, The Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Ida-Marie Høyvik
- Department
of Chemistry, The Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
41
|
Červinka C, Fulem M. State-of-the-Art Calculations of Sublimation Enthalpies for Selected Molecular Crystals and Their Computational Uncertainty. J Chem Theory Comput 2017; 13:2840-2850. [PMID: 28437618 DOI: 10.1021/acs.jctc.7b00164] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A computational methodology for calculation of sublimation enthalpies of molecular crystals from first principles is developed and validated by comparison to critically evaluated literature experimental data. Temperature-dependent sublimation enthalpies for a set of selected 22 molecular crystals in their low-temperature phases are calculated. The computational methodology consists of several building blocks based on high-level electronic structure methods of quantum chemistry and statistical thermodynamics. Ab initio methods up to the coupled clusters with iterative treatment of single and double excitations and perturbative triples correction with an estimated complete basis set description [CCSD(T)/CBS] are used to calculate the cohesive energies of crystalline phases within a fragment-based additive scheme. Density functional theory (DFT) calculations with periodic boundary conditions (PBC) coupled with the quasi-harmonic approximation are used to evaluate the thermal contributions to the enthalpy of the solid phase. The properties of the vapor phase are calculated within the ideal-gas model using the rigid-rotor harmonic-oscillator model with correction for internal rotation using a one-dimensional hindered rotor approximation and a proper treatment of the molecular rotational degrees of freedom in the vicinity of 0 K. All individual terms contributing to the sublimation enthalpy as a function of temperature are discussed and their uncertainties estimated by comparison to critically evaluated experimental data.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology , Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Michal Fulem
- Department of Physical Chemistry, University of Chemistry and Technology , Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| |
Collapse
|
42
|
Fang T, Li Y, Li S. Generalized energy‐based fragmentation approach for modeling condensed phase systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1297] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tao Fang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational ChemistryNanjing University Nanjing P. R. China
| | - Yunzhi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational ChemistryNanjing University Nanjing P. R. China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational ChemistryNanjing University Nanjing P. R. China
| |
Collapse
|
43
|
Červinka C, Beran GJO. Ab initio thermodynamic properties and their uncertainties for crystalline α-methanol. Phys Chem Chem Phys 2017; 19:29940-29953. [DOI: 10.1039/c7cp06605h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To investigate the performance of quasi-harmonic electronic structure methods for modeling molecular crystals at finite temperatures and pressures, thermodynamic properties are calculated for the low-temperature α polymorph of crystalline methanol and their computational uncertainties are analyzed.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry
- University of Chemistry and Technology Prague
- CZ-166 28 Prague 6
- Czech Republic
| | | |
Collapse
|
44
|
Demerdash O, Head-Gordon T. Parallel implementation of approximate atomistic models of the AMOEBA polarizable model. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Masur O, Schütz M, Maschio L, Usvyat D. Fragment-Based Direct-Local-Ring-Coupled-Cluster Doubles Treatment Embedded in the Periodic Hartree–Fock Solution. J Chem Theory Comput 2016; 12:5145-5156. [DOI: 10.1021/acs.jctc.6b00651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oliver Masur
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, 93049 Regensburg, Germany
| | - Martin Schütz
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, 93049 Regensburg, Germany
| | - Lorenzo Maschio
- Dipartimento
di Chimica, and NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino, via Giuria 5, I-10125 Torino, Italy
| | - Denis Usvyat
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, 93049 Regensburg, Germany
| |
Collapse
|
46
|
Klimeš J. Lattice energies of molecular solids from the random phase approximation with singles corrections. J Chem Phys 2016; 145:094506. [DOI: 10.1063/1.4962188] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jiří Klimeš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague 8, Czech Republic and Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic
| |
Collapse
|
47
|
Reilly AM, Cooper RI, Adjiman CS, Bhattacharya S, Boese AD, Brandenburg JG, Bygrave PJ, Bylsma R, Campbell JE, Car R, Case DH, Chadha R, Cole JC, Cosburn K, Cuppen HM, Curtis F, Day GM, DiStasio Jr RA, Dzyabchenko A, van Eijck BP, Elking DM, van den Ende JA, Facelli JC, Ferraro MB, Fusti-Molnar L, Gatsiou CA, Gee TS, de Gelder R, Ghiringhelli LM, Goto H, Grimme S, Guo R, Hofmann DWM, Hoja J, Hylton RK, Iuzzolino L, Jankiewicz W, de Jong DT, Kendrick J, de Klerk NJJ, Ko HY, Kuleshova LN, Li X, Lohani S, Leusen FJJ, Lund AM, Lv J, Ma Y, Marom N, Masunov AE, McCabe P, McMahon DP, Meekes H, Metz MP, Misquitta AJ, Mohamed S, Monserrat B, Needs RJ, Neumann MA, Nyman J, Obata S, Oberhofer H, Oganov AR, Orendt AM, Pagola GI, Pantelides CC, Pickard CJ, Podeszwa R, Price LS, Price SL, Pulido A, Read MG, Reuter K, Schneider E, Schober C, Shields GP, Singh P, Sugden IJ, Szalewicz K, Taylor CR, Tkatchenko A, Tuckerman ME, Vacarro F, Vasileiadis M, Vazquez-Mayagoitia A, Vogt L, Wang Y, Watson RE, de Wijs GA, Yang J, Zhu Q, Groom CR. Report on the sixth blind test of organic crystal structure prediction methods. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2016; 72:439-59. [PMID: 27484368 PMCID: PMC4971545 DOI: 10.1107/s2052520616007447] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/04/2016] [Indexed: 05/05/2023]
Abstract
The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and `best practices' for performing CSP calculations. All of the targets, apart from a single potentially disordered Z' = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms.
Collapse
Affiliation(s)
- Anthony M. Reilly
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
| | - Richard I. Cooper
- Chemical Crystallography, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
| | - Claire S. Adjiman
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, England
| | - Saswata Bhattacharya
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - A. Daniel Boese
- Department of Chemistry, Institute of Physical and Theoretical Chemistry, University of Graz, Heinrichstraße 28/IV, 8010 Graz, Austria
| | - Jan Gerit Brandenburg
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Peter J. Bygrave
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, England
| | - Rita Bylsma
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Josh E. Campbell
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, England
| | - Roberto Car
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - David H. Case
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, England
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Jason C. Cole
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
| | - Katherine Cosburn
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA
- Department of Physics, University of Toronto, Toronto, Canada M5S 1A7
| | - Herma M. Cuppen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Farren Curtis
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Graeme M. Day
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, England
| | - Robert A. DiStasio Jr
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Dennis M. Elking
- OpenEye Scientific Software, 9 Bisbee Court, Suite D, Santa Fe, NM 87508, USA
| | - Joost A. van den Ende
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Julio C. Facelli
- Center for High Performance Computing, University of Utah, 155 South 1452 East Room 405, Salt Lake City, UT 84112-0190, USA
- Department of Biomedical Informatics, University of Utah, 155 South 1452 East Room 405, Salt Lake City, UT 84112-0190, USA
| | - Marta B. Ferraro
- Departamento de Física and Ifiba (CONICET) Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I (1428), Buenos Aires, Argentina
| | - Laszlo Fusti-Molnar
- OpenEye Scientific Software, 9 Bisbee Court, Suite D, Santa Fe, NM 87508, USA
| | - Christina-Anna Gatsiou
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, England
| | - Thomas S. Gee
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, England
| | - René de Gelder
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Luca M. Ghiringhelli
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Hitoshi Goto
- Educational Programs on Advanced Simulation Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
- Department of Computer Science and Engineering, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Rui Guo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England
| | - Detlef W. M. Hofmann
- CRS4, Parco Scientifico e Tecnologico, POLARIS, Edificio 1, 09010 PULA, Italy
- FlexCryst, Schleifweg 23, 91080 Uttenreuth, Germany
| | - Johannes Hoja
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Rebecca K. Hylton
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England
| | - Luca Iuzzolino
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England
| | - Wojciech Jankiewicz
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Daniël T. de Jong
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - John Kendrick
- Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, England
| | - Niek J. J. de Klerk
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Hsin-Yu Ko
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | - Xiayue Li
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sanjaya Lohani
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA
| | - Frank J. J. Leusen
- Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, England
| | - Albert M. Lund
- OpenEye Scientific Software, 9 Bisbee Court, Suite D, Santa Fe, NM 87508, USA
- Department of Chemistry, University of Utah, 155 South 1452 East Room 405, Salt Lake City, UT 84112-0190, USA
| | - Jian Lv
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People’s Republic of China
| | - Yanming Ma
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People’s Republic of China
| | - Noa Marom
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA
- Department of Materials Science and Engineering and Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Artëm E. Masunov
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, PAV400, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, 4111 Libra Drive PSB225, Orlando, FL 32816, USA
- Department of Physics, University of Central Florida, 4111 Libra Drive PSB430, Orlando, FL 32816, USA
- Department of Condensed Matter Physics, National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow 115409, Russia
| | - Patrick McCabe
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
| | - David P. McMahon
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, England
| | - Hugo Meekes
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Michael P. Metz
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Alston J. Misquitta
- School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, England
| | | | - Bartomeu Monserrat
- Cavendish Laboratory, 19, J. J. Thomson Avenue, Cambridge CB3 0HE, England
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019, USA
| | - Richard J. Needs
- Cavendish Laboratory, 19, J. J. Thomson Avenue, Cambridge CB3 0HE, England
| | | | - Jonas Nyman
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, England
| | - Shigeaki Obata
- Educational Programs on Advanced Simulation Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Harald Oberhofer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Artem R. Oganov
- Department of Geosciences, Center for Materials by Design, and Institute for Advanced Computational Science, SUNY Stony Brook, NY 11794-2100, USA
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Centers, Bldg. 3, Moscow Region, 143026, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russia
- International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Anita M. Orendt
- Center for High Performance Computing, University of Utah, 155 South 1452 East Room 405, Salt Lake City, UT 84112-0190, USA
| | - Gabriel I. Pagola
- Departamento de Física and Ifiba (CONICET) Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I (1428), Buenos Aires, Argentina
| | - Constantinos C. Pantelides
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, England
| | - Chris J. Pickard
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, England
- Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT, England
| | - Rafal Podeszwa
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Louise S. Price
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England
| | - Sarah L. Price
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England
| | - Angeles Pulido
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, England
| | - Murray G. Read
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Elia Schneider
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Christoph Schober
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Gregory P. Shields
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
| | - Pawanpreet Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Isaac J. Sugden
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, England
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | | | - Alexandre Tkatchenko
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg
| | - Mark E. Tuckerman
- Department of Chemistry, New York University, New York, NY 10003, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| | - Francesca Vacarro
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA
- Department of Chemistry, Loyola University, New Orleans, LA 70118, USA
| | - Manolis Vasileiadis
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, England
| | | | - Leslie Vogt
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Yanchao Wang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People’s Republic of China
| | - Rona E. Watson
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England
| | - Gilles A. de Wijs
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jack Yang
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, England
| | - Qiang Zhu
- Department of Geosciences, Center for Materials by Design, and Institute for Advanced Computational Science, SUNY Stony Brook, NY 11794-2100, USA
| | - Colin R. Groom
- The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
| |
Collapse
|
48
|
Demerdash O, Head-Gordon T. Convergence of the Many-Body Expansion for Energy and Forces for Classical Polarizable Models in the Condensed Phase. J Chem Theory Comput 2016; 12:3884-93. [DOI: 10.1021/acs.jctc.6b00335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Omar Demerdash
- Department of Chemistry, ‡Department of Bioengineering, §Department of Chemical
and Biomolecular
Engineering, ∥Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Department of Chemistry, ‡Department of Bioengineering, §Department of Chemical
and Biomolecular
Engineering, ∥Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| |
Collapse
|
49
|
Červinka C, Fulem M, Růžička K. CCSD(T)/CBS fragment-based calculations of lattice energy of molecular crystals. J Chem Phys 2016; 144:064505. [PMID: 26874495 DOI: 10.1063/1.4941055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A comparative study of the lattice energy calculations for a data set of 25 molecular crystals is performed using an additive scheme based on the individual energies of up to four-body interactions calculated using the coupled clusters with iterative treatment of single and double excitations and perturbative triples correction (CCSD(T)) with an estimated complete basis set (CBS) description. The CCSD(T)/CBS values on lattice energies are used to estimate sublimation enthalpies which are compared with critically assessed and thermodynamically consistent experimental values. The average absolute percentage deviation of calculated sublimation enthalpies from experimental values amounts to 13% (corresponding to 4.8 kJ mol(-1) on absolute scale) with unbiased distribution of positive to negative deviations. As pair interaction energies present a dominant contribution to the lattice energy and CCSD(T)/CBS calculations still remain computationally costly, benchmark calculations of pair interaction energies defined by crystal parameters involving 17 levels of theory, including recently developed methods with local and explicit treatment of electronic correlation, such as LCC and LCC-F12, are also presented. Locally and explicitly correlated methods are found to be computationally effective and reliable methods enabling the application of fragment-based methods for larger systems.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Michal Fulem
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Květoslav Růžička
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| |
Collapse
|
50
|
Otero-de-la-Roza A, DiLabio GA, Johnson ER. Exchange–Correlation Effects for Noncovalent Interactions in Density Functional Theory. J Chem Theory Comput 2016; 12:3160-75. [DOI: 10.1021/acs.jctc.6b00298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. Otero-de-la-Roza
- National Institute for Nanotechnology, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
- Department
of Chemistry, University of British Columbia, Okanagan, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Gino A. DiLabio
- National Institute for Nanotechnology, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
- Department
of Chemistry, University of British Columbia, Okanagan, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Erin R. Johnson
- Department
of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|