1
|
Naskar K, Mukherjee S, Ghosh S, Adhikari S. Coupled 3D ( J ≥ 0) Time-Dependent Wave Packet Calculation for the F + H 2 Reaction on Accurate Ab Initio Multi-State Diabatic Potential Energy Surfaces. J Phys Chem A 2024; 128:1438-1456. [PMID: 38359800 DOI: 10.1021/acs.jpca.3c05590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We had calculated adiabatic potential energy surfaces (PESs), nonadiabatic, and spin-orbit (SO) coupling terms among the lowest three electronic states (12A', 22A', and 12A″) of the F + H2 system using the multireference configuration interaction (MRCI) level of theory, and the adiabatic-to-diabatic transformation equations were solved to formulate the diabatic Hamiltonian matrix [J. Chem. Phys. 2020, 153, 174301] for the entire region of the nuclear configuration space. The accuracy of such diabatic PESs is explored by performing scattering calculations to evaluate integral cross sections (ICSs) and rate constants. The nonadiabatic and SO effects are studied by utilizing coupled 3D time-dependent wave packet formalism with zero and nonzero total angular momentum on multiple adiabatic/diabatic surfaces calculation. We depict the convergence profiles of reaction probabilities for the reactive as well as nonreactive processes on various electronic states at different collision energies with respect to total angular momentum including all helicity quantum numbers. Finally, total ICSs are calculated as functions of collision energies for the initial rovibrational state (v = 0, j = 0) of the H2 molecule along with the temperature-dependent rate coefficient, where those quantities are compared with previous theoretical and experimental results.
Collapse
Affiliation(s)
- Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, West Bengal, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
2
|
Naskar K, Ghosh S, Adhikari S. Accurate Calculation of Rate Constant and Isotope Effect for the F + H 2 Reaction by the Coupled 3D Time-Dependent Wave Packet Method on the Newly Constructed Ab Initio Ground Potential Energy Surface. J Phys Chem A 2022; 126:3311-3328. [PMID: 35594416 DOI: 10.1021/acs.jpca.2c01209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ coupled three-dimensional (3D) time dependent wave packet formalism in hyperspherical coordinates for reactive scattering problem on the newly constructed ab initio calculated ground adiabatic potential energy surface for the F + H2/D2 reaction. The convergence profiles for various reactive channels are depicted at low collision energy regimes with respect to the total angular momentum (J) quantum numbers. For two different reactant diatomic molecules (H2 and D2) initially at their respective ground roto-vibrational state (v = 0, j = 0), calculated state-to-state as well as total integral cross sections as a function of collision energy, temperature dependent rate constants, and the kinetic isotope effect for various reactivity profiles of F + H2 and F + D2 reactions are presented along with previous theoretical and experimental results.
Collapse
Affiliation(s)
- Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata West Bengal-741246, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| |
Collapse
|
3
|
Mukherjee B, Naskar K, Mukherjee S, Ravi S, Shamasundar KR, Mukhopadhyay D, Adhikari S. Beyond Born-Oppenheimer constructed diabatic potential energy surfaces for F + H 2 reaction. J Chem Phys 2020; 153:174301. [PMID: 33167635 DOI: 10.1063/5.0021885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
First principles based beyond Born-Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin-orbit (SO) coupling effect on the collision process of the F + H2 reaction has been included as a perturbation to the non-relativistic electronic Hamiltonian. Adiabatic PESs and NACTs for the lowest three electronic states (12A', 22A', and 12A″) are determined in hyperspherical coordinates as functions of hyperangles for a grid of fixed values of the hyperradius. Jahn-Teller (JT) type conical intersections between the two A' states translate along C2v and linear geometries in F + H2. In addition, A' and A″ states undergo Renner-Teller (RT) interaction at collinear configurations of this system. Both JT and RT couplings are validated by integrating NACTs along properly chosen contours. Subsequently, we have solved adiabatic-to-diabatic transformation (ADT) equations to evaluate the ADT angles for constructing the diabatic potential matrix of F + H2, including the SO coupling terms. The newly calculated diabatic PESs are found to be smooth, single-valued, continuous, and symmetric and can be invoked for performing accurate scattering calculations on the F + H2 system.
Collapse
Affiliation(s)
- Bijit Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Satyam Ravi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - K R Shamasundar
- Department of Chemical Science, Indian Institute of Science Education and Research, Mohali, India
| | | | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
4
|
Wang HL, Su S, Yu SR, Che L, Wu GR, Yuan KJ, Yang XM, Minton TK. Crossed beam study on the F+D 2→DF+D reaction at hyperthermal collision energy of 23.84 kJ/mol. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1901005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hei-long Wang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Shu Su
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Sheng-rui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Li Che
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
- College of Science, Dalian Maritime University, Dalian 116026, China
| | - Guo-rong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Kai-jun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Xue-ming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Timothy K. Minton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
5
|
Mandal S, Ghosh S, Sardar S, Adhikari S. The TDDVR approach for molecular photoexcitation, molecule–surface and triatomic reactive scattering processes. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1548103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Souvik Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, India
| | - Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, India
| | | | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, India
| |
Collapse
|
6
|
Influence of collision energy on the dynamics of the reaction H (2S) + NH (X3Σ−) → N (4S) + H2 (X1Σ g + ) by the state-to-state quantum mechanical study. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1489-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Talaat H, Moussa AH, Shalaby M, Sedik EWS, Kamal MTED. Quantum dynamics of heavy light heavy reactions: Application to (F + CH4 → FCH3 + H) reaction. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2013. [DOI: 10.1134/s0036024413030369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Jahn–Teller intersections involving excited states of the F+H2 system: Identification and influence on the reaction system. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Csehi A, Bende A, Halász GJ, Vibók Á, Das A, Mukhopadhyay D, Mukherjee S, Adhikari S, Baer M. Dressed Adiabatic and Diabatic Potentials for the Renner–Teller/Jahn–Teller F + H2 System. J Phys Chem A 2013; 117:8497-505. [DOI: 10.1021/jp311014z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A. Csehi
- Department of Information
Technology, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
| | - A. Bende
- Molecular and Biomolecular
Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - G. J. Halász
- Department of Information
Technology, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
| | - Á. Vibók
- Department of Theoretical
Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen, Hungary
| | - A. Das
- Department of Chemistry, University of Calcutta, Kolkata 700
009, India
| | - D. Mukhopadhyay
- Department of Chemistry, University of Calcutta, Kolkata 700
009, India
| | - S. Mukherjee
- Department of Physical
Chemistry, Indian Association for Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - S. Adhikari
- Department of Physical
Chemistry, Indian Association for Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Michael Baer
- Department of Physical
Chemistry, Indian Association for Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
10
|
Das A, Mukhopadhyay D, Adhikari S, Baer M. Derivation of diabatic potentials for F+H2 employing non-adiabatic coupling terms. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.09.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Butkovskaya NI, Setser DW. Infrared chemiluminescence from water-forming reactions: Characterization of dynamics and mechanisms. INT REV PHYS CHEM 2010. [DOI: 10.1080/0144235021000033381] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- N. I. Butkovskaya
- a Institute of Chemical Physics , Russian Academy of Sciences , Moscow , 117334 , Russian Federation
| | - D. W. Setser
- b Department of Chemistry , Kansas State University , Manhattan , KS , 66506 , USA
| |
Collapse
|
12
|
Li Y, Liu L, Farrar JM. Vibrational−Rotational Energy Distributions in the Reaction O− + D2 → OD + D−. J Phys Chem A 2009; 113:15233-9. [DOI: 10.1021/jp905610u] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yue Li
- Department of Chemistry, University of Rochester, Rochester, New York 14627
| | - Li Liu
- Department of Chemistry, University of Rochester, Rochester, New York 14627
| | - James M. Farrar
- Department of Chemistry, University of Rochester, Rochester, New York 14627
| |
Collapse
|
13
|
Rusin LY, Sevryuk MB, Toennies JP. The special features of rotationally resolved differential cross sections of the F + H2 reaction at small scattering angles. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2007. [DOI: 10.1134/s199079310705003x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Zolot AM, Nesbitt DJ. Quantum state resolved scattering dynamics of F+HCl→HF(v,J)+Cl. J Chem Phys 2007; 127:114319. [PMID: 17887849 DOI: 10.1063/1.2770464] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
State-to-state reaction dynamics of the reaction F+HCl-->HF(v,J)+Cl have been studied under single-collision conditions using an intense discharge F atom source in crossed supersonic molecular beams at Ecom=4.3(1.3) kcal/mol. Nascent HF product is monitored by shot-noise limited direct infrared laser absorption, providing quantum state distributions as well as additional information on kinetic energy release from high resolution Dopplerimetry. The vibrational distributions are highly inverted, with 34(4)%, 44(2)%, and 8(1)% of the total population in vHF=1, 2, and 3, respectively, consistent with predominant energy release into the newly formed bond. However, there is a small [14(1)%] but significant formation channel into the vHF=0 ground state, which is directly detectable for the first time via direct absorption methods. Of particular dynamical interest, both the HF(v=2,J) and HF(v=1,J) populations exhibit strongly bimodal J distributions. These results differ significantly from previous flow and arrested-relaxation studies and may signal the presence of microscopic branching in the reaction dynamics.
Collapse
Affiliation(s)
- A M Zolot
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
15
|
Deskevich MP, Hayes MY, Takahashi K, Skodje RT, Nesbitt DJ. Multireference configuration interaction calculations for the F(P2)+HCl→HF+Cl(P2) reaction: A correlation scaled ground state (1A′2) potential energy surface. J Chem Phys 2006; 124:224303. [PMID: 16784270 DOI: 10.1063/1.2192505] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This paper presents a new ground state (1 (2)A(')) electronic potential energy surface for the F((2)P)+HCl-->HF+Cl((2)P) reaction. The ab initio calculations are done at the multireference configuration interaction+Davidson correction (MRCI+Q) level of theory by complete basis set extrapolation of the aug-cc-pVnZ (n=2,3,4) energies. Due to low-lying charge transfer states in the transition state region, the molecular orbitals are obtained by six-state dynamically weighted multichannel self-consistent field methods. Additional perturbative refinement of the energies is achieved by implementing simple one-parameter correlation energy scaling to reproduce the experimental exothermicity (DeltaE=-33.06 kcalmol) for the reaction. Ab initio points are fitted to an analytical function based on sum of two- and three-body contributions, yielding a rms deviation of <0.3 kcalmol for all geometries below 10 kcalmol above the barrier. Of particular relevance to nonadiabatic dynamics, the calculations show significant multireference character in the transition state region, which is located 3.8 kcalmol with respect to F+HCl reactants and features a strongly bent F-H-Cl transition state geometry (theta approximately 123.5 degrees ). Finally, the surface also exhibits two conical intersection seams that are energetically accessible at low collision energies. These seams arise naturally from allowed crossings in the C(infinityv) linear configuration that become avoided in C(s) bent configurations of both the reactant and product, and should be a hallmark of all X-H-Y atom transfer reaction dynamics between ((2)P) halogen atoms.
Collapse
Affiliation(s)
- Michael P Deskevich
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | |
Collapse
|
16
|
Rusin LY, Sevryuk MB, Toennies JP. Comparison of experimental time-of-flight spectra of the HF products from the F+H2 reaction with exact quantum mechanical calculations. J Chem Phys 2005; 122:134314. [PMID: 15847472 DOI: 10.1063/1.1873772] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
High resolution HF product time-of-flight spectra measured for the reactive scattering of F atoms from n-H2(p-H2) molecules at collision energies between 69 and 81 meV are compared with exact coupled-channel quantum mechanical calculations based on the Stark-Werner ab initio ground state potential energy surface. Excellent agreement between the experimental and computed rotational distributions is found for the HF product vibrational states v'=1 and v'=2. For the v'=3 vibrational state the agreement, however, is less satisfactory, especially for the reaction with p-H2. The results for v'=1 and v'=2 confirm that the reaction dynamics for these product states is accurately described by the ground electronic state 1 (2)A' potential energy surface. The deviations for HF(v'=3, j' > or =2) are attributed to an enhancement of the reaction resulting from the 25% fraction of excited ((2)P(12)) fluorine atoms in the reactant beam.
Collapse
Affiliation(s)
- Lev Yu Rusin
- Institute of Energy Problems of Chemical Physics, Russia Academy of Sciences, Leninskiî prospect 38, Building 2, Moscow 119334, Russia.
| | | | | |
Collapse
|
17
|
Abstract
This review discusses recent quantum scattering calculations on bimolecular chemical reactions in the gas phase. This theory provides detailed and accurate predictions on the dynamics and kinetics of reactions containing three atoms. In addition, the method can now be applied to reactions involving polyatomic molecules. Results obtained with both time-independent and time-dependent quantum dynamical methods are described. The review emphasises the recent development in time-dependent wave packet theories and the applications of reduced dimensionality approaches for treating polyatomic reactions. Calculations on over 40 different reactions are described.
Collapse
|
18
|
|
19
|
Harper WW, Nizkorodov SA, Nesbitt DJ. Reactive scattering of F+HD→HF(v,J)+D: HF(v,J) nascent product state distributions and evidence for quantum transition state resonances. J Chem Phys 2002. [DOI: 10.1063/1.1456507] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Lukeš V, Vrábel I, Laurinc V, Biskupič S. Ab Initio Study of the HF(Χ )−H(2S) van der Waals Complex. J Phys Chem A 2001. [DOI: 10.1021/jp010583e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vladimír Lukeš
- Department of Chemical Physics, Slovak University of Technology, Radlinského 9, SK-81 237 Bratislava, Slovak Republic, Institute of Theoretical Chemistry and Molecular Biology, University of Vienna, Währingerstrasse 17, AT-1100 Vienna, Austria, and Department of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-81 237 Bratislava, Slovak Republic
| | - Imrich Vrábel
- Department of Chemical Physics, Slovak University of Technology, Radlinského 9, SK-81 237 Bratislava, Slovak Republic, Institute of Theoretical Chemistry and Molecular Biology, University of Vienna, Währingerstrasse 17, AT-1100 Vienna, Austria, and Department of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-81 237 Bratislava, Slovak Republic
| | - Viliam Laurinc
- Department of Chemical Physics, Slovak University of Technology, Radlinského 9, SK-81 237 Bratislava, Slovak Republic, Institute of Theoretical Chemistry and Molecular Biology, University of Vienna, Währingerstrasse 17, AT-1100 Vienna, Austria, and Department of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-81 237 Bratislava, Slovak Republic
| | - Stanislav Biskupič
- Department of Chemical Physics, Slovak University of Technology, Radlinského 9, SK-81 237 Bratislava, Slovak Republic, Institute of Theoretical Chemistry and Molecular Biology, University of Vienna, Währingerstrasse 17, AT-1100 Vienna, Austria, and Department of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-81 237 Bratislava, Slovak Republic
| |
Collapse
|
21
|
Liu K. Crossed-beam studies of neutral reactions: state-specific differential cross sections. Annu Rev Phys Chem 2001; 52:139-64. [PMID: 11326062 DOI: 10.1146/annurev.physchem.52.1.139] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Crossed-molecular-beam and laser techniques have enabled experimentalists to measure the state-resolved differential cross sections of elementary chemical reactions. This article reviews recent progress in this area. Particular emphasis is placed on some intriguing physical phenomena associated with a few benchmark reactions and how these measurements help in answering fundamental questions about reaction dynamics. We examine specifically the geometric phase effects in the reaction H + D2, the dynamical resonance phenomenon in F + HD, the unusually large spin-orbit reactivity in Cl((2)P) + H2, the insertion reaction O((1)D) + H2, and the mode-specific reactivity in Cl + CH4(nu). The give-and-take between experiment and theory in unraveling the physical picture of the dynamics is illustrated throughout this review.
Collapse
Affiliation(s)
- K Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan 10764, Republic of China.
| |
Collapse
|
22
|
Althorpe SC. Quantum wavepacket method for state-to-state reactive cross sections. J Chem Phys 2001. [DOI: 10.1063/1.1334866] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
MARKOVIĆ NIKOLA, BILLING GERTD. Analyses of the semi-classical wavepacket approach to chemical reactions: the F + H2→ HF + H reaction. Mol Phys 2000. [DOI: 10.1080/00268970009483381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Harper WW, Nizkorodov SA, Nesbitt DJ. Quantum state-resolved reactive scattering of F+CH4→HF(v,J)+CH3: Nascent HF(v,J) product state distributions. J Chem Phys 2000. [DOI: 10.1063/1.1287398] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Dong F, Lee SH, Liu K. Reactive excitation functions for F+p-H2/n-H2/D2 and the vibrational branching for F+HD. J Chem Phys 2000. [DOI: 10.1063/1.1287840] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Nizkorodov SA, Harper WW, Chapman WB, Blackmon BW, Nesbitt DJ. Energy-dependent cross sections and nonadiabatic reaction dynamics in F(2P3/2,2P1/2)+n–H2→HF(v,J)+H. J Chem Phys 1999. [DOI: 10.1063/1.480182] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Abstract
▪ Abstract This article reviews recent progress in our understanding of gas-phase neutral reaction dynamics as made possible by improvements in the crossed molecular beam scattering technique for measuring reactive differential cross sections. A selection of crossed-beam studies on systems that play a fundamental role in our basic understanding of reaction phenomena are discussed to illustrate the capabilities of the experimental method. The examples include benchmark atom-diatom abstraction and insertion reactions, and four-atom radical reactions for which state-to-state, state-resolved, or state-averaged differential cross sections have recently been measured. The results are discussed in the light of the latest related theoretical developments regarding the treatment of potential energy surfaces and the dynamics of the systems. Recent results on crossed-beam studies of chemically relevant reactions of carbon, nitrogen, and oxygen atoms are also reviewed, and the latest developments in the technique are noted.
Collapse
Affiliation(s)
- P Casavecchia
- Dipartimento di Chimica, Università di Perugia, 06123 Perugia, Italy.
| | | | | |
Collapse
|
28
|
Baer M. Strong isotope effects in the F+HD reactions at the low-energy interval: a quantum-mechanical study. Chem Phys Lett 1999. [DOI: 10.1016/s0009-2614(99)00920-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Aoiz FJ, Bañares L, Castillo JF. Spin–orbit effects in quantum mechanical rate constant calculations for the F+H2→HF+H reaction. J Chem Phys 1999. [DOI: 10.1063/1.479703] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Baer M, Faubel M, Martı́nez-Haya B, Rusin L, Tappe U, Toennies JP. Rotationally resolved differential scattering cross sections for the reaction F+para-H2 (v=0, j=0)→HF(v′=2, 3, j′)+H. J Chem Phys 1999. [DOI: 10.1063/1.478955] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
31
|
|
32
|
Castillo JF, Hartke B, Werner HJ, Aoiz FJ, Bañares L, Martı́nez-Haya B. Quantum mechanical and quasiclassical simulations of molecular beam experiments for the F+H2→HF+H reaction on two ab initio potential energy surfaces. J Chem Phys 1998. [DOI: 10.1063/1.477401] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Faubel M, Martínez−Haya B, Rusin LY, Tappe U, Toennies JP, Aoiz FJ, Bañares L. Rotational State Resolved Differential Cross Sections for the Reaction F + D2 → DF + D at Collision Energies 140−240 meV. J Phys Chem A 1998. [DOI: 10.1021/jp982488k] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|