1
|
Pan J, Carter-Fenk KA, Hung ST, Dao N, Smith JNS, Fayer MD. Dynamics of Deep Eutectic Mixtures of Tetraethylammonium Halides/Ethylene Glycol Investigated with Ultrafast Infrared Spectroscopy. J Phys Chem B 2025; 129:2718-2729. [PMID: 40014810 DOI: 10.1021/acs.jpcb.4c08739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Health and environmental risks posed by volatile organic solvents create an incentive to develop safer, less volatile solvents with the appropriate functionality. Deep eutectic solvents and other low-volatility organic mixtures offer a highly tunable alternative through a mixture composition selection. However, a significant gap exists in understanding the relationship between molecular-level properties and the resulting solvation and transport properties. Using ultrafast infrared (IR) polarization-selective pump-probe (lifetimes and orientational relaxation) spectroscopy, we investigated the dynamics of 1:3 molar mixtures of tetraethylammonium bromide (TEABr) and chloride (TEACl) with ethylene glycol (EG) and of pure EG using the anionic vibrational probe, the CN stretch of SeCN-. The very high salt concentrations are in many respects analogous to water-in-salt solutions, e.g., LiBr and LiCl. These ion/water mixtures can have extremely high ratios of ions to solvating neutral molecules, similar to the 1:3TEABr and 1:3TEACl mixtures studied here. In 1:3TEABr/EG and 1:3TEACl/EG solutions, there are far too few EGs to solvate the ions. Therefore, like water-in-salt, 1:3TEABr/EG and 1:3TEACl/EG solutions will have solvent-separated ion pairs, contact ion pairs, and large ion/EG clusters, forming extended ion/solvent networks. The orientational dynamics experiments on 1:3TEABr/EG and 1:3TEACl/EG show striking similarities to experiments from the literature on 1:4 LiBr and LiCl aqueous solutions, even though the cations and solvents in the deep eutectic mixtures are vastly different.
Collapse
Affiliation(s)
- Junkun Pan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kimberly A Carter-Fenk
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Samantha T Hung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Nhu Dao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Science Learning Institute, Foothill College, Los Altos Hills, California 94022, United States
| | - Jordyn N S Smith
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Zhao Y, Yu P, Wang J. Chlorine-Modified Soluble Melem-Based Graphitic Carbon Nitrite: Facile Synthesis, Catalytic Property and Ultrafast 2D IR Spectroscopic Characterization. Chemphyschem 2024; 25:e202400356. [PMID: 39080833 DOI: 10.1002/cphc.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
On the basis of thermal etching bulk graphitic carbon nitride (g-C3N4), a mild hydrochloric acid treatment method was used in this work to produce g-C3N4 nano-sheets (CNNS) and further carbon nitride with chloride-modification (CNCl). The latter has thinner layer and smaller particle size and exhibit greatly improved dispersibility and solubility in water, DMSO and other polar solvents. A typical photocatalytic reaction in solution driven by CNCl shows a significantly improved photocatalytic performance over bulk g-C3N4 and CNNS. Steady-state analytical tools including SEM, mass, UV-Vis, and IR spectroscopies, and time-resolved two-dimensional infrared (2D IR) vibrational spectroscopy, were used together in this work. Better solubility, more flexible structure, smaller size, easier generation of free radicals and lower recombination rate of electron-hole pair, are believed to be reasons for the superior photocatalytic performance of CNCl.
Collapse
Affiliation(s)
- Yueting Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Huang-Fu ZC, Qian Y, Zhang T, Brown JB, Rao Y. Development of phase-cycling interface-specific two-dimensional electronic sum frequency generation (2D-ESFG) spectroscopy. J Chem Phys 2024; 161:114201. [PMID: 39291691 DOI: 10.1063/5.0227560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Two-dimensional electronic spectroscopy (2D-ES) has become an important technique for studying energy transfer, electronic coupling, and electronic-vibrational coherence in the past ten years. However, since 2D-ES is not interface specific, the electronic information at surfaces and interfaces could not be demonstrated clearly. Two-dimensional electronic sum-frequency generation (2D-ESFG) is an emerging spectroscopic technique that explores the correlations between different interfacial electronic transitions and is the extension of 2D-ES to surface and interfacial specificity. In this work, we present the detailed development and implementation of phase-cycling 2D-ESFG spectroscopy using an acousto-optic pulse shaper in a pump-probe geometry. With the pulse pair generated by a pulse shaper rather than optical devices based on birefringence or interference, this 2D-ESFG setup enables rapid scanning, phase cycling, and the separation of rephasing and nonrephasing signals. In addition, by collecting data in a rotating frame, we greatly improve experimental efficiency. We demonstrate the method for azo-derivative molecules at the air/water interface. This method could be readily extended to different interfaces and surfaces. The unique phase-cycling 2D-ESFG technique enables one to quantify the energy transfer, charge transfer, electronic coupling, and many other electronic properties and dynamics at surfaces and interfaces with precision and relative ease of use. Our goal in this article is to present the fine details of the fourth-order nonlinear optical technique in a manner that is comprehensive, succinct, and approachable such that other researchers can implement, improve, and adapt it to probe unique and innovative problems to advance the field.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
4
|
Huang-Fu ZC, Tkachenko NV, Qian Y, Zhang T, Brown JB, Harutyunyan A, Chen G, Rao Y. Conical Intersections at Interfaces Revealed by Phase-Cycling Interface-Specific Two-Dimensional Electronic Spectroscopy (i2D-ES). J Am Chem Soc 2024. [PMID: 39037260 DOI: 10.1021/jacs.4c06035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Conical intersections (CIs) hold significant stake in manipulating and controlling photochemical reaction pathways of molecules at interfaces and surfaces by affecting molecular dynamics therein. Currently, there is no tool for characterizing CIs at interfaces and surfaces. To this end, we have developed phase-cycling interface-specific two-dimensional electronic spectroscopy (i2D-ES) and combined it with advanced computational modeling to explore nonadiabatic CI dynamics of molecules at the air/water interface. Specifically, we integrated the phase locked pump pulse pair with an interface-specific electronic probe to obtain the two-dimensional interface-specific responses. We demonstrate that the nonadiabatic transitions of an interface-active azo dye molecule that occur through the CIs at the interface have different kinetic pathways from those in the bulk water. Upon photoexcitation, two CIs are present: one from an intersection of an optically active S2 state with a dark S1 state and the other from the intersection of the progressed S1 with the ground state S0. We find that the molecular conformations in the ground state are different for interfacial molecules. The interfacial molecules are intimately correlated with the locally populated excited state S2 being farther away from the CI region. This leads to slower nonadiabatic dynamics at the interface than in bulk water. Moreover, we show that the nonadiabatic transition from the S1 dark state to the ground state is significantly longer at the interface than that in the bulk, which is likely due to the orientationally restricted configuration of the excited state at the interface. Our findings suggest that orientational configurations of molecules manipulate reaction pathways at interfaces and surfaces.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Nikolay V Tkachenko
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Avetik Harutyunyan
- Honda Research Institute, USA, Inc., San Jose, California 95134, United States
| | - Gugang Chen
- Honda Research Institute, USA, Inc., San Jose, California 95134, United States
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
5
|
Hung ST, Roget SA, Fayer MD. Effects of Nanoconfinement on Dynamics in Concentrated Aqueous Magnesium Chloride Solutions. J Phys Chem B 2024; 128:5513-5527. [PMID: 38787935 DOI: 10.1021/acs.jpcb.4c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Water behavior in various natural and manufactured settings is influenced by confinement in organic or inorganic frameworks and the presence of solutes. Here, the effects on dynamics from both confinement and the addition of solutes are examined. Specifically, water and ion dynamics in concentrated (2.5-4.2 m) aqueous magnesium chloride solutions confined in mesoporous silica (2.8 nm pore diameter) were investigated using polarization selective pump-probe and 2D infrared spectroscopies. Fitting the rotational and spectral diffusion dynamics measured by the vibrational probe, selenocyanate, with a previously developed two-state model revealed distinct behaviors at the interior of the silica pores (core state) and near the wall of the confining framework (shell state). The shell dynamics are noticeably slower than the bulk, or core, dynamics. The concentration-dependent slowing of the dynamics aligns with behavior in the bulk solutions, but the spectrally separated water-associated and Mg2+-associated forms of the selenocyanate probe exhibit different responses to confinement. The disparity in the complete reorientation times is larger upon confinement, but the spectral diffusion dynamics become more similar near the silica surface. The length scales that characterize the transition from surface-influenced to bulk-like behavior for the salt solutions in the pores are discussed and compared to those of pure water and an organic solvent confined in the same pores. These comparisons offer insights into how confinement modulates the properties of different liquids.
Collapse
Affiliation(s)
- Samantha T Hung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sean A Roget
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Yan C, Wang C, Wagner JC, Ren J, Lee C, Wan Y, Wang SE, Xiong W. Multidimensional Widefield Infrared-Encoded Spontaneous Emission Microscopy: Distinguishing Chromophores by Ultrashort Infrared Pulses. J Am Chem Soc 2024; 146:1874-1886. [PMID: 38085547 PMCID: PMC10811677 DOI: 10.1021/jacs.3c07251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/25/2024]
Abstract
Photoluminescence (PL) imaging has broad applications in visualizing biological activities, detecting chemical species, and characterizing materials. However, the chemical information encoded in the PL images is often limited by the overlapping emission spectra of chromophores. Here, we report a PL microscopy based on the nonlinear interactions between mid-infrared and visible excitations on matters, which we termed MultiDimensional Widefield Infrared-encoded Spontaneous Emission (MD-WISE) microscopy. MD-WISE microscopy can distinguish chromophores that possess nearly identical emission spectra via conditions in a multidimensional space formed by three independent variables: the temporal delay between the infrared and the visible pulses (t), the wavelength of visible pulses (λvis), and the frequencies of the infrared pulses (ωIR). This method is enabled by two mechanisms: (1) modulating the optical absorption cross sections of molecular dyes by exciting specific vibrational functional groups and (2) reducing the PL quantum yield of semiconductor nanocrystals, which was achieved through strong field ionization of excitons. Importantly, MD-WISE microscopy operates under widefield imaging conditions with a field of view of tens of microns, other than the confocal configuration adopted by most nonlinear optical microscopies, which require focusing the optical beams tightly. By demonstrating the capacity of registering multidimensional information into PL images, MD-WISE microscopy has the potential of expanding the number of species and processes that can be simultaneously tracked in high-speed widefield imaging applications.
Collapse
Affiliation(s)
- Chang Yan
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Ultrafast Science and Technology, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang
Institute for Advanced Study, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Chenglai Wang
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Jackson C. Wagner
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Jianyu Ren
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Carlynda Lee
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Yuhao Wan
- Department
of Pathology, University of California San
Diego, La Jolla, California 92093, United States
| | - Shizhen E. Wang
- Department
of Pathology, University of California San
Diego, La Jolla, California 92093, United States
| | - Wei Xiong
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Materials
Science and Engineering Program, University
of California San Diego, La Jolla, California 92093, United States
- Department
of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Hill TD, Basnet S, Lepird HH, Rightnowar BW, Moran SD. Anisotropic dynamics of an interfacial enzyme active site observed using tethered substrate analogs and ultrafast 2D IR spectroscopy. J Chem Phys 2023; 159:165101. [PMID: 37870142 PMCID: PMC10597647 DOI: 10.1063/5.0167991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Enzymes accelerate the rates of biomolecular reactions by many orders of magnitude compared to bulk solution, and it is widely understood that this catalytic effect arises from a combination of polar pre-organization and electrostatic transition state stabilization. A number of recent reports have also implicated ultrafast (femtosecond-picosecond) timescale motions in enzymatic activity. However, complications arising from spatially-distributed disorder, the occurrence of multiple substrate binding modes, and the influence of hydration dynamics on solvent-exposed active sites still confound many experimental studies. Here we use ultrafast two-dimensional infrared (2D IR) spectroscopy and covalently-tethered substrate analogs to examine dynamical properties of the promiscuous Pyrococcus horikoshii ene-reductase (PhENR) active site in two binding configurations mimicking proposed "inactive" and "reactive" Michaelis complexes. Spectral diffusion measurements of aryl-nitrile substrate analogs reveal an end-to-end tradeoff between fast (sub-ps) and slow (>5 ps) motions. Fermi resonant aryl-azide analogs that sense interactions of coupled oscillators are described. Lineshape and quantum beat analyses of these probes reveal characteristics that correlate with aryl-nitrile frequency fluctuation correlation functions parameters, demonstrating that this anisotropy is an intrinsic property of the water-exposed active site, where countervailing gradients of fast dynamics and disorder in the reactant ground state are maintained near the hydration interface. Our results suggest several plausible factors leading to state-selective rate enhancement and promiscuity in PhENR. This study also highlights a strategy to detect perturbations to vibrational modes outside the transparent window of the mid-IR spectrum, which may be extended to other macromolecular systems.
Collapse
Affiliation(s)
| | - Sunil Basnet
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Hannah H. Lepird
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Blaze W. Rightnowar
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Sean D. Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| |
Collapse
|
8
|
Huang-Fu ZC, Qian Y, Deng GH, Zhang T, Schmidt S, Brown J, Rao Y. Development of Two-Dimensional Electronic-Vibrational Sum Frequency Generation (2D-EVSFG) for Vibronic and Solvent Couplings of Molecules at Interfaces and Surfaces. ACS PHYSICAL CHEMISTRY AU 2023; 3:374-385. [PMID: 37520317 PMCID: PMC10375875 DOI: 10.1021/acsphyschemau.3c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 08/01/2023]
Abstract
Many photoinduced excited states' relaxation processes and chemical reactions occur at interfaces and surfaces, including charge transfer, energy transfer, proton transfer, proton-coupled electron transfer, configurational dynamics, conical intersections, etc. Of them, interactions of electronic and vibrational motions, namely, vibronic couplings, are the main determining factors for the relaxation processes or reaction pathways. However, time-resolved electronic-vibrational spectroscopy for interfaces and surfaces is lacking. Here we develop interface/surface-specific two-dimensional electronic-vibrational sum frequency generation spectroscopy (2D-EVSFG) for time-dependent vibronic coupling of excited states at interfaces and surfaces. We further demonstrate the fourth-order technique by investigating vibronic coupling, solvent correlation, and time evolution of the coupling for photoexcited interface-active molecules, crystal violet (CV), at the air/water interface as an example. The two vibronic absorption peaks for CV molecules at the interface from the 2D-EVSFG experiments were found to be more prominent than their counterparts in bulk from 2D-EV. Quantitative analysis of the vibronic peaks in 2D-EVSFG suggested that a non-Condon process participates in the photoexcitation of CV at the interface. We further reveal vibrational solvent coupling for the zeroth level on the electronic state with respect to that on the ground state, which is directly related to the magnitude of its change in solvent reorganization energy. The change in the solvent reorganization energy at the interface is much smaller than that in bulk methanol. Time-dependent center line slopes (CLSs) of 2D-EVSFG also showed that kinetic behaviors of CV at the air/water interface are significantly different from those in bulk methanol. Our ultrafast 2D-EVSFG experiments not only offer vibrational information on both excited states and the ground state as compared with the traditional doubly resonant sum frequency generation and electronic-vibrational coupling but also provide vibronic coupling, dynamical solvent effects, and time evolution of vibronic coupling at interfaces.
Collapse
|
9
|
Fica-Contreras SM, Charnay AP, Pan J, Fayer MD. Rethinking Vibrational Stark Spectroscopy: Peak Shifts, Line Widths, and the Role of Non-Stark Solvent Coupling. J Phys Chem B 2023; 127:717-731. [PMID: 36629314 DOI: 10.1021/acs.jpcb.2c06071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A vibration's transition frequency is partly determined by the first-order Stark effect, which accounts for the electric field experienced by the mode. Using ultrafast infrared pump-probe and FT-IR spectroscopies, we characterized both the 0 → 1 and 1 → 2 vibrational transitions' field-dependent peak positions and line widths of the CN stretching mode of benzonitrile (BZN) and phenyl selenocyanate (PhSeCN) in ten solvents. We present a theoretical model that decomposes the observed line width into a field-dependent Stark contribution and a field-independent non-Stark solvent coupling contribution (NSC). The model demonstrates that the field-dependent peak position is independent of the line width, even when the NSC dominates the latter. Experiments show that when the Stark tuning rate is large compared to the NSC (PhSeCN), the line width has a field dependence, albeit with major NSC-induced excursions from linearity. When the Stark tuning rate is small relative to the NSC (BZN), the line width is field-independent. BZN's line widths are substantially larger for the 1 → 2 transition, indicating a 1 → 2 transition enhancement of the NSC. Additionally, we examine, theoretically and experimentally, the difference in the 0 → 1 and 1 → 2 transitions' Stark tuning rates. Second-order perturbation theory combined with density functional theory explain the difference and show that the 1 → 2 transition's Stark tuning rate is ∼10% larger. The Stark tuning rate of PhSeCN is larger than BZN's for both transitions, consistent with the theoretical calculations. This study provides new insights into vibrational line shape components and a more general understanding of the vibrational response to external electric fields.
Collapse
Affiliation(s)
| | - Aaron P Charnay
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Junkun Pan
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| |
Collapse
|
10
|
Al-Mualem ZA, Chen X, Shirley JC, Xu C, Baiz CR. BoxCARS 2D IR spectroscopy with pulse shaping. OPTICS EXPRESS 2023; 31:2700-2709. [PMID: 36785278 PMCID: PMC10018786 DOI: 10.1364/oe.471984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 06/18/2023]
Abstract
BoxCARS and pump-probe geometries are common implementations of two-dimensional infrared (2D IR) spectroscopy. BoxCARS is background-free, generally offering greater signal-to-noise ratio, which enables measuring weak vibrational echo signals. Pulse shapers have been implemented in the pump-probe geometry to accelerate data collection and suppress scatter and other unwanted signals by precise control of the pump-pulse delay and carrier phase. Here, we introduce a 2D-IR optical setup in the BoxCARS geometry that implements a pulse shaper for rapid acquisition of background-free 2D IR spectra. We show a signal-to-noise improvement using this new fast-scan BoxCARS setup versus the pump-probe geometry within the same configuration.
Collapse
Affiliation(s)
- Ziareena A. Al-Mualem
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
- Authors contributed equally
| | - Xiaobing Chen
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
- Authors contributed equally
| | - Joseph C. Shirley
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Cong Xu
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| |
Collapse
|
11
|
Dicke SS, Maj M, Fields CR, Zanni MT. Metastable intermediate during hIAPP aggregation catalyzed by membranes as detected with 2D IR spectroscopy. RSC Chem Biol 2022; 3:931-940. [PMID: 35866164 PMCID: PMC9257649 DOI: 10.1039/d2cb00028h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
The aggregation of human islet amyloid polypeptide (hIAPP) into amyloid fibrils involves formation of oligomeric intermediates that are thought to be the cytotoxic species responsible for β-cell dysfunction in type 2 diabetes. hIAPP oligomers permeating or disrupting the cellular membrane may be one mechanism of toxicity and so measuring the structural kinetics of aggregation in the presence of membranes is of much interest. In this study, we use 2D IR spectroscopy and 13C18O isotope labeling to study the secondary structure of the oligomeric intermediates formed in solution and in the presence of phospholipid vesicles at sites L12A13, L16V17, G24A25 and V32G33. Pairs of labels monitor the couplings between associated polypeptides and the dihedral angles between adjacent residues. In solution, the L12A13 residues form an oligomeric β-sheet in addition to an α-helix whereas with the phospholipid vesicles they are α-helical throughout the aggregation process. In both solution and with DOPC vesicles, L16V17 and V32G33 have disordered structures until fibrils are formed. Similarly, under both conditions, G24A25 exhibits 3-state kinetics, created by an oligomeric intermediate with a well-defined β-sheet structure. Amyloid fibril formation is often thought to involve intermediates with exceedingly low populations that are difficult to detect experimentally. These experiments establish that amyloid fibril formation of hIAPP when catalyzed by membranes includes a metastable intermediate and that this intermediate has a similar structure at G24A25 in the FGAIL region as the corresponding intermediate in solution, thought to be the toxic species. 2D IR and 13C18O isotope labeling establish that amyloid formation of hIAPP catalyzed by membranes includes a metastable intermediate with a similar structure at G24A25 in the FGAIL region as the corresponding intermediate in solution.![]()
Collapse
Affiliation(s)
- Sidney S Dicke
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA .,Formally at Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Caitlyn R Fields
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
12
|
Time-resolved infrared absorption spectroscopy applied to photoinduced reactions: how and why. Photochem Photobiol Sci 2022; 21:557-584. [DOI: 10.1007/s43630-022-00180-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
|
13
|
Hung ST, Yamada SA, Zheng W, Fayer MD. Ultrafast Dynamics and Liquid Structure in Mesoporous Silica: Propagation of Surface Effects in a Polar Aprotic Solvent. J Phys Chem B 2021; 125:10018-10034. [PMID: 34450013 DOI: 10.1021/acs.jpcb.1c04798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enhancement of processes ranging from gas sorption to ion conduction in a liquid can be substantial upon nanoconfinement. Here, the dynamics of a polar aprotic solvent, 1-methylimidazole (MeIm), in mesoporous silica (2.8, 5.4, and 8.3 nm pore diameters) were examined using femtosecond infrared vibrational spectroscopy and molecular dynamics simulations of a dilute probe, the selenocyanate (SeCN-) anion. The long vibrational lifetime and sensitivity of the CN stretch enabled a comprehensive investigation of the relatively slow time scales and subnanometer distance dependences of the confined dynamics. Because MeIm does not readily donate hydrogen bonds, its interactions in the hydrophilic silanol pores differ more from the bulk than those of water confined in the same mesopores, resulting in greater structural order and more dramatic slowing of dynamics. The extent of surface effects was quantified by modified two-state models used to fit three spatially averaged experimental observables: vibrational lifetime, orientational relaxation, and spectral diffusion. The length scales and the models (smoothed step, exponential decay, and simple step) describing the transitions between the distinctive shell behavior at the surface and the bulk-like behavior at the pore interior were compared to those of water. The highly nonuniform distributions of the SeCN- probe and antiparallel layering of MeIm revealed by the simulations guided the interpretation of the results and development of the analytical models. The results illustrate the importance of electrostatic effects and H-bonding interactions in the behavior of confined liquids.
Collapse
Affiliation(s)
- Samantha T Hung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven A Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Weizhong Zheng
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
Xiang B, Xiong W. Molecular vibrational polariton: Its dynamics and potentials in novel chemistry and quantum technology. J Chem Phys 2021; 155:050901. [PMID: 34364350 DOI: 10.1063/5.0054896] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular vibrational polaritons, a hybridized quasiparticle formed by the strong coupling between molecular vibrational modes and photon cavity modes, have attracted tremendous attention in the chemical physics community due to their peculiar influence on chemical reactions. At the same time, the half-photon half-matter characteristics of polaritons make them suitable to possess properties from both sides and lead to new features that are useful for photonic and quantum technology applications. To eventually use polaritons for chemical and quantum applications, it is critical to understand their dynamics. Due to the intrinsic time scale of cavity modes and molecular vibrational modes in condensed phases, polaritons can experience dynamics on ultrafast time scales, e.g., relaxation from polaritons to dark modes. Thus, ultrafast vibrational spectroscopy becomes an ideal tool to investigate such dynamics. In this Perspective, we give an overview of recent ultrafast spectroscopic works by our group and others in the field. These recent works show that molecular vibrational polaritons can have distinct dynamics from its pure molecular counterparts, such as intermolecular vibrational energy transfer and hot vibrational dynamics. We then discuss some current challenges and future opportunities, such as the possible use of ultrafast vibrational dynamics, to understand cavity-modified reactions and routes to develop molecular vibrational polaritons as new room temperature quantum platforms.
Collapse
Affiliation(s)
- Bo Xiang
- Materials Science and Engineering Program, UC San Diego, San Diego, California 92093, USA
| | - Wei Xiong
- Materials Science and Engineering Program, UC San Diego, San Diego, California 92093, USA
| |
Collapse
|
15
|
Fica-Contreras SM, Daniels R, Yassin O, Hoffman DJ, Pan J, Sotzing G, Fayer MD. Long Vibrational Lifetime R-Selenocyanate Probes for Ultrafast Infrared Spectroscopy: Properties and Synthesis. J Phys Chem B 2021; 125:8907-8918. [PMID: 34339200 DOI: 10.1021/acs.jpcb.1c04939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrafast infrared vibrational spectroscopy is widely used for the investigation of dynamics in systems from water to model membranes. Because the experimental observation window is limited to a few times the probe's vibrational lifetime, a frequent obstacle for the measurement of a broad time range is short molecular vibrational lifetimes (typically a few to tens of picoseconds). Five new long-lifetime aromatic selenocyanate vibrational probes have been synthesized and their vibrational properties characterized. These probes are compared to commercial phenyl selenocyanate. The vibrational lifetimes range between ∼400 and 500 ps in complex solvents, which are some of the longest room-temperature vibrational lifetimes reported to date. In contrast to vibrations that are long-lived in simple solvents such as CCl4, but become much shorter in complex solvents, the probes discussed here have ∼400 ps lifetimes in complex solvents and even longer in simple solvents. One of them has a remarkable lifetime of 1235 ps in CCl4. These probes have a range of molecular sizes and geometries that can make them useful for placement into different complex materials due to steric reasons, and some of them have functionalities that enable their synthetic incorporation into larger molecules, such as industrial polymers. We investigated the effect of a range of electron-donating and electron-withdrawing para-substituents on the vibrational properties of the CN stretch. The probes have a solvent-independent linear relationship to the Hammett substituent parameter when evaluated with respect to the CN vibrational frequency and the ipso 13C NMR chemical shift.
Collapse
Affiliation(s)
| | - Robert Daniels
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Omer Yassin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - David J Hoffman
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Junkun Pan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Gregory Sotzing
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
16
|
Tumbic GW, Hossan MY, Thielges MC. Protein Dynamics by Two-Dimensional Infrared Spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:299-321. [PMID: 34314221 PMCID: PMC8713465 DOI: 10.1146/annurev-anchem-091520-091009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Proteins function as ensembles of interconverting structures. The motions span from picosecond bond rotations to millisecond and longer subunit displacements. Characterization of functional dynamics on all spatial and temporal scales remains challenging experimentally. Two-dimensional infrared spectroscopy (2D IR) is maturing as a powerful approach for investigating proteins and their dynamics. We outline the advantages of IR spectroscopy, describe 2D IR and the information it provides, and introduce vibrational groups for protein analysis. We highlight example studies that illustrate the power and versatility of 2D IR for characterizing protein dynamics and conclude with a brief discussion of the outlook for biomolecular 2D IR.
Collapse
Affiliation(s)
- Goran W Tumbic
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| | - Md Yeathad Hossan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| |
Collapse
|
17
|
Le DV, de la Perrelle JM, Do TN, Leng X, Tapping PC, Scholes GD, Kee TW, Tan HS. Characterization of the ultrafast spectral diffusion and vibronic coherence of TIPS-pentacene using 2D electronic spectroscopy. J Chem Phys 2021; 155:014302. [PMID: 34241376 DOI: 10.1063/5.0055528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
TIPS-pentacene is a small-molecule organic semiconductor that is widely used in optoelectronic devices. It has been studied intensely owing to its ability to undergo singlet fission. In this study, we aim to develop further understanding of the coupling between the electronic and nuclear degrees of freedom of TIPS-pentacene (TIPS-Pn). We measured and analyzed the 2D electronic spectra of TIPS-Pn in solutions. Using center line slope (CLS) analysis, we characterized the frequency-fluctuation correlation function of the 0-0 vibronic transition. Strong oscillations in the CLS values were observed for up to 5 ps with a frequency of 264 cm-1, which are attributable to a large vibronic coupling with the TIPS-Pn ring-breathing vibrational mode. In addition, detailed analysis of the CLS values allowed us to retrieve two spectral diffusion lifetimes, which are attributed to the inertial and diffusive dynamics of solvent molecules. Amplitude beating analysis also uncovered couplings with another vibrational mode at 1173 cm-1. The experimental results can be described using the displaced harmonic oscillator model. By comparing the CLS values of the simulated data with the experimental CLS values, we estimated a Huang-Rhys factor of 0.1 for the ring-breathing vibrational mode. The results demonstrated how CLS analysis can be a useful method for characterizing the strength of vibronic coupling.
Collapse
Affiliation(s)
- Duc Viet Le
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | | | - Thanh Nhut Do
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xuan Leng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Patrick C Tapping
- Department of Chemistry, University of Adelaide, Adelaide SA 5005, Australia
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Tak W Kee
- Department of Chemistry, University of Adelaide, Adelaide SA 5005, Australia
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
18
|
Duan R, Mastron JN, Song Y, Kubarych KJ. Direct comparison of amplitude and geometric measures of spectral inhomogeneity using phase-cycled 2D-IR spectroscopy. J Chem Phys 2021; 154:174202. [PMID: 34241049 DOI: 10.1063/5.0043961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Two-dimensional infrared (2D-IR) spectroscopy provides access to equilibrium dynamics with the extraction of the frequency-fluctuation correlation function (FFCF) from the measured spectra. Several different methods of obtaining the FFCF from experimental spectra, such as the center line slope (CLS), ellipticity, phase slope, and nodal line slope, all depend on the geometrical nature of the 2D line shape and necessarily require spectral extent in order to achieve a measure of the FFCF. Amplitude measures, on the other hand, such as the inhomogeneity index, rely only on signal amplitudes and can, in principle, be computed using just a single point in a 2D spectrum. With a pulse shaper-based 2D-IR spectrometer, in conjunction with phase cycling, we separate the rephasing and nonrephasing signals used to determine the inhomogeneity index. The same measured data provide the absorptive spectrum, needed for the CLS. Both methods are applied to two model molecular systems: tungsten hexacarbonyl (WCO6) and methylcyclopentadienyl manganese tricarbonyl [Cp'Mn(CO)3, MCMT]. The three degenerate IR modes of W(CO)6 lack coherent modulation or noticeable intramolecular vibrational redistribution (IVR) and are used to establish a baseline comparison. The two bands of the MCMT tripod complex include intraband coherences and IVR as well as likely internal torsional motion on a few-picosecond time scale. We find essentially identical spectral diffusion, but faster, non-equilibrium dynamics lead to differences in the FFCFs extracted with the two methods. The inhomogeneity index offers an advantage in cases where spectra are complex and energy transfer can mimic line shape changes due to frequency fluctuations.
Collapse
Affiliation(s)
- Rong Duan
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, USA
| | - Joseph N Mastron
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, USA
| | - Yin Song
- Department of Physics, University of Michigan, 430 Church Ave., Ann Arbor, Michigan 48109, USA
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, USA
| |
Collapse
|
19
|
Yamada SA, Hung ST, Shin JY, Fayer MD. Complex Formation and Dissociation Dynamics on Amorphous Silica Surfaces. J Phys Chem B 2021; 125:4566-4581. [DOI: 10.1021/acs.jpcb.1c01225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Samantha T. Hung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jae Yoon Shin
- Department of Advanced Materials Chemistry, Korea University, Sejong, Korea
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Fica-Contreras SM, Hoffman DJ, Pan J, Liang C, Fayer MD. Free Volume Element Sizes and Dynamics in Polystyrene and Poly(methyl methacrylate) Measured with Ultrafast Infrared Spectroscopy. J Am Chem Soc 2021; 143:3583-3594. [PMID: 33630576 DOI: 10.1021/jacs.0c13397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The size, size distribution, dynamics, and electrostatic properties of free volume elements (FVEs) in polystyrene (PS) and poly(methyl methacrylate) (PMMA) were investigated using the Restricted Orientation Anisotropy Method (ROAM), an ultrafast infrared spectroscopic technique. The restricted orientational dynamics of a vibrational probe embedded in the polymer matrix provides detailed information on FVE sizes and their probability distribution. The probe's orientational dynamics vary as a function of its frequency within the inhomogeneously broadened vibrational absorption spectrum. By characterizing the degree of orientational restriction at different probe frequencies, FVE radii and their probability distribution were determined. PS has larger FVEs and a broader FVE size distribution than PMMA. The average FVE radii in PS and PMMA are 3.4 and 3.0 Å, respectively. The FVE radius probability distribution shows that the PS distribution is non-Gaussian, with a tail to larger radii, whereas in PMMA, the distribution is closer to Gaussian. FVE structural dynamics, previously unavailable through other techniques, occur on a ∼150 ps time scale in both polymers. The dynamics involve FVE shape fluctuations which, on average, conserve the FVE size. FVE radii were associated with corresponding electric field strengths through the first-order vibrational Stark effect of the CN stretch of the vibrational probe, phenyl selenocyanate (PhSeCN). PMMA displayed unique measured FVE radii for each electric field strength. By contrast, PS showed that, while larger radii correspond to unique and relatively weak electric fields, the smallest measured radii map onto a broad distribution of strong electric fields.
Collapse
Affiliation(s)
| | - David J Hoffman
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Junkun Pan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chungwen Liang
- Computational Modeling Core Facility, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
21
|
Decoding ultrafast polarization responses in lead halide perovskites by the two-dimensional optical Kerr effect. Proc Natl Acad Sci U S A 2021; 118:2022268118. [PMID: 33558241 DOI: 10.1073/pnas.2022268118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ultrafast polarization response to incident light and ensuing exciton/carrier generation are essential to outstanding optoelectronic properties of lead halide perovskites (LHPs). A large number of mechanistic studies in the LHP field to date have focused on contributions to polarizability from organic cations and the highly polarizable inorganic lattice. For a comprehensive understanding of the ultrafast polarization response, we must additionally account for the nearly instantaneous hyperpolarizability response to the propagating light field itself. While light propagation is pivotal to optoelectronics and photonics, little is known about this in LHPs in the vicinity of the bandgap where stimulated emission, polariton condensation, superfluorescence, and photon recycling may take place. Here we develop two-dimensional optical Kerr effect (2D-OKE) spectroscopy to energetically dissect broadband light propagation and dispersive nonlinear polarization responses in LHPs. In contrast to earlier interpretations, the below-bandgap OKE responses in both hybrid CH3NH3PbBr3 and all-inorganic CsPbBr3 perovskites are found to originate from strong hyperpolarizability and highly anisotropic dispersions. In both materials, the nonlinear mixing of anisotropically propagating light fields results in convoluted oscillatory polarization dynamics. Based on a four-wave mixing model, we quantitatively derive dispersion anisotropies, reproduce 2D-OKE frequency correlations, and establish polarization-dressed light propagation in single-crystal LHPs. Moreover, our findings highlight the importance of distinguishing the often-neglected anisotropic light propagation from underlying coherent quasiparticle responses in various forms of ultrafast spectroscopy.
Collapse
|
22
|
Hoffman DJ, Fica-Contreras SM, Pan J, Fayer MD. Pulse-shaped chopping: Eliminating and characterizing heat effects in ultrafast infrared spectroscopy. J Chem Phys 2020; 153:204201. [DOI: 10.1063/5.0031581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David J. Hoffman
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | - Junkun Pan
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
23
|
Amorphous polymer dynamics and free volume element size distributions from ultrafast IR spectroscopy. Proc Natl Acad Sci U S A 2020; 117:13949-13958. [PMID: 32513742 DOI: 10.1073/pnas.2003225117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A method for measuring the size and size probability distribution of free volume regions in polymeric materials using ultrafast infrared (IR) polarization-selective pump-probe experiments is presented. Measurements of the ultrafast dynamics of a vibrational probe (the CN stretch of phenyl selenocyanate) in poly(methyl methacrylate) show that the probe dynamics are highly confined. The degree of confinement was found to be both time-dependent and dependent on the vibrational frequency of the probe molecule. The experiments demonstrate that different vibrational frequencies correspond to distinct subensembles of probe molecules that have different dynamic properties determined by their local structural environments. By combining the degree of dynamical confinement with the molecular size of the probe molecule, the free volume element size probability distribution was determined and found to be in good agreement with the best established experimental measure of free volume. The relative probability of a free volume element size is determined by the amplitude of the nitrile absorption spectrum at the frequency of the measurement. The inhomogeneous broadening of the spectrum was linked to the vibrational Stark effect, which permits site selectivity. The observed dynamics at each frequency were then associated with a different size free volume element and distinct local electric field. The multiple timescales observed in the pump-probe experiments were connected to local structural fluctuations of the free volume elements.
Collapse
|
24
|
Shin JY, Wang YL, Yamada SA, Hung ST, Fayer MD. Imidazole and 1-Methylimidazole Hydrogen Bonding and Nonhydrogen Bonding Liquid Dynamics: Ultrafast IR Experiments. J Phys Chem B 2019; 123:2094-2105. [DOI: 10.1021/acs.jpcb.8b11299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jae Yoon Shin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yong-Lei Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Samantha T. Hung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Song Y, Konar A, Sechrist R, Roy VP, Duan R, Dziurgot J, Policht V, Matutes YA, Kubarych KJ, Ogilvie JP. Multispectral multidimensional spectrometer spanning the ultraviolet to the mid-infrared. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:013108. [PMID: 30709236 DOI: 10.1063/1.5055244] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Multidimensional spectroscopy is the optical analog to nuclear magnetic resonance, probing dynamical processes with ultrafast time resolution. At optical frequencies, the technical challenges of multidimensional spectroscopy have hindered its progress until recently, where advances in laser sources and pulse-shaping have removed many obstacles to its implementation. Multidimensional spectroscopy in the visible and infrared (IR) regimes has already enabled respective advances in our understanding of photosynthesis and the structural rearrangements of liquid water. A frontier of ultrafast spectroscopy is to extend and combine multidimensional techniques and frequency ranges, which have been largely restricted to operating in the distinct visible or IR regimes. By employing two independent amplifiers seeded by a single oscillator, it is straightforward to span a wide range of time scales (femtoseconds to seconds), all of which are often relevant to the most important energy conversion and catalysis problems in chemistry, physics, and materials science. Complex condensed phase systems have optical transitions spanning the ultraviolet (UV) to the IR and exhibit dynamics relevant to function on time scales of femtoseconds to seconds and beyond. We describe the development of the Multispectral Multidimensional Nonlinear Spectrometer (MMDS) to enable studies of dynamical processes in atomic, molecular, and material systems spanning femtoseconds to seconds, from the UV to the IR regimes. The MMDS employs pulse-shaping methods to provide an easy-to-use instrument with an unprecedented spectral range that enables unique combination spectroscopies. We demonstrate the multispectral capabilities of the MMDS on several model systems.
Collapse
Affiliation(s)
- Yin Song
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Riley Sechrist
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Ved Prakash Roy
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Rong Duan
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Jared Dziurgot
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Veronica Policht
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Yassel Acosta Matutes
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| |
Collapse
|
26
|
Yamada SA, Bailey HE, Fayer MD. Orientational Pair Correlations in a Dipolar Molecular Liquid: Time-Resolved Resonant and Nonresonant Pump–Probe Spectroscopies. J Phys Chem B 2018; 122:12147-12153. [DOI: 10.1021/acs.jpcb.8b10711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Heather E. Bailey
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
27
|
Buchanan LE, Maj M, Dunkelberger EB, Cheng PN, Nowick JS, Zanni MT. Structural Polymorphs Suggest Competing Pathways for the Formation of Amyloid Fibrils That Diverge from a Common Intermediate Species. Biochemistry 2018; 57:6470-6478. [PMID: 30375231 DOI: 10.1021/acs.biochem.8b00997] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is now recognized that many amyloid-forming proteins can associate into multiple fibril structures. Here, we use two-dimensional infrared spectroscopy to study two fibril polymorphs formed by human islet amyloid polypeptide (hIAPP or amylin), which is associated with type 2 diabetes. The polymorphs exhibit different degrees of structural organization near the loop region of hIAPP fibrils. The relative populations of these polymorphs are systematically altered by the presence of macrocyclic peptides which template β-sheet formation at specific sections of the hIAPP sequence. These experiments are consistent with polymorphs that result from competing pathways for fibril formation and that the macrocycles bias hIAPP aggregation toward one pathway or the other. Another macrocyclic peptide that matches the loop region but extends the lag time leaves the relative populations of the polymorphs unaltered, suggesting that the branching point for structural divergence occurs after the lag phase, when the oligomers convert into seeds that template fibril formation. Thus, we conclude that the structures of the polymorphs stem from restricting oligomers along diverging folding pathways, which has implications for drug inhibition, cytotoxicity, and the free energy landscape of hIAPP aggregation.
Collapse
Affiliation(s)
- Lauren E Buchanan
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| | - Michał Maj
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| | - Emily B Dunkelberger
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| | - Pin-Nan Cheng
- Department of Chemistry , University of California-Irvine , Irvine , California 92697-2025 , United States
| | - James S Nowick
- Department of Chemistry , University of California-Irvine , Irvine , California 92697-2025 , United States
| | - Martin T Zanni
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| |
Collapse
|
28
|
Yuan R, Yan C, Fayer M. Ion–Molecule Complex Dissociation and Formation Dynamics in LiCl Aqueous Solutions from 2D IR Spectroscopy. J Phys Chem B 2018; 122:10582-10592. [DOI: 10.1021/acs.jpcb.8b08743] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rongfeng Yuan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chang Yan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
29
|
Nishida J, Breen JP, Lindquist KP, Umeyama D, Karunadasa HI, Fayer MD. Dynamically Disordered Lattice in a Layered Pb-I-SCN Perovskite Thin Film Probed by Two-Dimensional Infrared Spectroscopy. J Am Chem Soc 2018; 140:9882-9890. [PMID: 30024160 DOI: 10.1021/jacs.8b03787] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The dynamically flexible lattices in lead halide perovskites may play important roles in extending carrier recombination lifetime in 3D perovskite solar-cell absorbers and in exciton self-trapping in 2D perovskite white-light phosphors. Two-dimensional infrared (2D IR) spectroscopy was applied to study a recently reported Pb-I-SCN layered perovskite. The Pb-I-SCN perovskite was spin-coated on a SiO2 surface as a thin film, with a thickness of ∼100 nm, where the S12CN- anions were isotopically diluted with the ratio of S12CN:S13CN = 5:95 to avoid vibrational coupling and excitation transfer between adjacent SCN- anions. The 12CN stretch mode of the minor S12CN- component was the principal vibrational probe that reported on the structural evolution through 2D IR spectroscopy. Spectral diffusion was observed with a time constant of 4.1 ± 0.3 ps. Spectral diffusion arises from small structural changes that result in sampling of frequencies within the distribution of frequencies comprising the inhomogeneously broadened infrared absorption band. These transitions among discrete local structures are distinct from oscillatory phonon motions of the lattice. To accurately evaluate the structural dynamics through measurement of spectral diffusion, the vibrational coupling between adjacent SCN- anions had to be carefully treated. Although the inorganic layers of typical 2D perovskites are structurally isolated from each other, the 2D IR data demonstrated that the layers of the Pb-I-SCN perovskite are vibrationally coupled. When both S12CN- and S13CN- were pumped simultaneously, cross-peaks between S12CN and S13CN vibrations and an oscillating 2D band shape of the S12CN- vibration were observed. Both observables demonstrate vibrational coupling between the closest SCN- anions, which reside in different inorganic layers. The thin films and the isotopic dilution produced exceedingly small vibrational echo signal fields; measurements were made possible using the near-Brewster's angle reflection pump-probe geometry.
Collapse
Affiliation(s)
- Jun Nishida
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - John P Breen
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Kurt P Lindquist
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Daiki Umeyama
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Hemamala I Karunadasa
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Michael D Fayer
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
30
|
Maj M, Lomont JP, Rich KL, Alperstein AM, Zanni MT. Site-specific detection of protein secondary structure using 2D IR dihedral indexing: a proposed assembly mechanism of oligomeric hIAPP. Chem Sci 2018; 9:463-474. [PMID: 29619202 PMCID: PMC5868010 DOI: 10.1039/c7sc03789a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Human islet amyloid polypeptide (hIAPP) aggregates into fibrils through oligomers that have been postulated to contain α-helices as well as β-sheets. We employ a site-specific isotope labeling strategy that is capable of detecting changes in dihedral angles when used in conjunction with 2D IR spectroscopy. The method is analogous to the chemical shift index used in NMR spectroscopy for assigning protein secondary structure. We introduce isotope labels at two neighbouring residues, which results in an increased intensity and positive frequency shift if those residues are α-helical versus a negative frequency shift in β-sheets and turns. The 2D IR dihedral index approach is demonstrated for hIAPP in micelles for which the polypeptide structure is known, using pairs of 13C18O isotope labels L12A13 and L16V17, along with single labeled control experiments. Applying the approach to aggregation experiments performed in buffer, we show that about 27-38% of hIAPP peptides adopt an α-helix secondary structure in the monomeric state at L12A13, prior to aggregation, but not at L16V17 residues. At L16V17, the kinetics are described solely by the monomer and fiber conformations, but at L12A13 the kinetics exhibit a third state that is created by an oligomeric intermediate. Control experiments performed with a single isotope label at A13 exhibit two-state kinetics, indicating that a previously unknown change in dihedral angle occurs at L12A13 as hIAPP transitions from the intermediate to fiber structures. We propose a mechanism for aggregation, in which helices seed oligomer formation via structures analogous to leucine rich repeat proteins.
Collapse
Affiliation(s)
- Michał Maj
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , USA .
| | - Justin P Lomont
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , USA .
| | - Kacie L Rich
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , USA .
| | - Ariel M Alperstein
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , USA .
| | - Martin T Zanni
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , USA .
| |
Collapse
|
31
|
Serrano AL, Lomont JP, Tu LH, Raleigh DP, Zanni MT. A Free Energy Barrier Caused by the Refolding of an Oligomeric Intermediate Controls the Lag Time of Amyloid Formation by hIAPP. J Am Chem Soc 2017; 139:16748-16758. [PMID: 29072444 DOI: 10.1021/jacs.7b08830] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transiently populated oligomers formed en route to amyloid fibrils may constitute the most toxic aggregates associated with many amyloid-associated diseases. Most nucleation theories used to describe amyloid aggregation predict low oligomer concentrations and do not take into account free energy costs that may be associated with structural rearrangements between the oligomer and fiber states. We have used isotope labeling and two-dimensional infrared spectroscopy to spectrally resolve an oligomeric intermediate during the aggregation of the human islet amyloid protein (hIAPP or amylin), the protein associated with type II diabetes. A structural rearrangement includes the F23G24A25I26L27 region of hIAPP, which starts from a random coil structure, evolves into ordered β-sheet oligomers containing at least 5 strands, and then partially disorders in the fibril structure. The supercritical concentration is measured to be between 150 and 250 μM, which is the thermodynamic parameter that sets the free energy of the oligomers. A 3-state kinetic model fits the experimental data, but only if it includes a concentration independent free energy barrier >3 kcal/mol that represents the free energy cost of refolding the oligomeric intermediate into the structure of the amyloid fibril; i.e., "oligomer activation" is required. The barrier creates a transition state in the free energy landscape that slows fibril formation and creates a stable population of oligomers during the lag phase, even at concentrations below the supercritical concentration. Largely missing in current kinetic models is a link between structure and kinetics. Our experiments and modeling provide evidence that protein structural rearrangements during aggregation impact the populations and kinetics of toxic oligomeric species.
Collapse
Affiliation(s)
- Arnaldo L Serrano
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Ling-Hsien Tu
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11790, United States
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11790, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
32
|
Shin JY, Yamada SA, Fayer MD. Carbon Dioxide in a Supported Ionic Liquid Membrane: Structural and Rotational Dynamics Measured with 2D IR and Pump–Probe Experiments. J Am Chem Soc 2017; 139:11222-11232. [DOI: 10.1021/jacs.7b05759] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jae Yoon Shin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
33
|
Yamada SA, Thompson WH, Fayer MD. Water-anion hydrogen bonding dynamics: Ultrafast IR experiments and simulations. J Chem Phys 2017. [DOI: 10.1063/1.4984766] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
34
|
Yuan R, Yan C, Nishida J, Fayer MD. Dynamics in a Water Interfacial Boundary Layer Investigated with IR Polarization-Selective Pump–Probe Experiments. J Phys Chem B 2017; 121:4530-4537. [DOI: 10.1021/acs.jpcb.7b01028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Rongfeng Yuan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chang Yan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jun Nishida
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
35
|
Vanselous H, Stingel AM, Petersen PB. Interferometric 2D Sum Frequency Generation Spectroscopy Reveals Structural Heterogeneity of Catalytic Monolayers on Transparent Materials. J Phys Chem Lett 2017; 8:825-830. [PMID: 28151677 DOI: 10.1021/acs.jpclett.6b03025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molecular monolayers exhibit structural and dynamical properties that are different from their bulk counterparts due to their interaction with the substrate. Extracting these distinct properties is crucial for a better understanding of processes such as heterogeneous catalysis and interfacial charge transfer. Ultrafast nonlinear spectroscopic techniques such as 2D infrared (2D IR) spectroscopy are powerful tools for understanding molecular dynamics in complex bulk systems. Here, we build on technical advancements in 2D IR and heterodyne-detected sum frequency generation (SFG) spectroscopy to study a CO2 reduction catalyst on nanostructured TiO2 with interferometric 2D SFG spectroscopy. Our method combines phase-stable heterodyne detection employing an external local oscillator with a broad-band pump pulse pair to provide the first high spectral and temporal resolution 2D SFG spectra of a transparent material. We determine the overall molecular orientation of the catalyst and find that there is a static structural heterogeneity reflective of different local environments at the surface.
Collapse
Affiliation(s)
- Heather Vanselous
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Ashley M Stingel
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Poul B Petersen
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
36
|
Yamada SA, Bailey HE, Tamimi A, Li C, Fayer MD. Dynamics in a Room-Temperature Ionic Liquid from the Cation Perspective: 2D IR Vibrational Echo Spectroscopy. J Am Chem Soc 2017; 139:2408-2420. [DOI: 10.1021/jacs.6b12011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven A. Yamada
- Department of Chemistry Stanford University, Stanford, California 94305, United States
| | - Heather E. Bailey
- Department of Chemistry Stanford University, Stanford, California 94305, United States
| | - Amr Tamimi
- Department of Chemistry Stanford University, Stanford, California 94305, United States
| | - Chunya Li
- Department of Chemistry Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry Stanford University, Stanford, California 94305, United States
| |
Collapse
|
37
|
Shin JY, Yamada SA, Fayer MD. Dynamics of a Room Temperature Ionic Liquid in Supported Ionic Liquid Membranes vs the Bulk Liquid: 2D IR and Polarized IR Pump–Probe Experiments. J Am Chem Soc 2016; 139:311-323. [DOI: 10.1021/jacs.6b10695] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jae Yoon Shin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
38
|
Tamimi A, Bailey HE, Fayer MD. Alkyl Chain Length Dependence of the Dynamics and Structure in the Ionic Regions of Room-Temperature Ionic Liquids. J Phys Chem B 2016; 120:7488-501. [DOI: 10.1021/acs.jpcb.6b05397] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amr Tamimi
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Heather E. Bailey
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
39
|
Giammanco CH, Yamada SA, Kramer PL, Tamimi A, Fayer MD. Structural and Rotational Dynamics of Carbon Dioxide in 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids: The Effect of Chain Length. J Phys Chem B 2016; 120:6698-711. [DOI: 10.1021/acs.jpcb.6b03971] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chiara H. Giammanco
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven A. Yamada
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Patrick L. Kramer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Amr Tamimi
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
40
|
Giammanco CH, Kramer PL, Yamada SA, Nishida J, Tamimi A, Fayer MD. Carbon dioxide in an ionic liquid: Structural and rotational dynamics. J Chem Phys 2016; 144:104506. [DOI: 10.1063/1.4943390] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chiara H. Giammanco
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Patrick L. Kramer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Jun Nishida
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Amr Tamimi
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
41
|
Tamimi A, Fayer MD. Ionic Liquid Dynamics Measured with 2D IR and IR Pump–Probe Experiments on a Linear Anion and the Influence of Potassium Cations. J Phys Chem B 2016; 120:5842-54. [DOI: 10.1021/acs.jpcb.6b00409] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amr Tamimi
- Department
of Chemistry Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department
of Chemistry Stanford University, Stanford, California 94305, United States
| |
Collapse
|
42
|
Ghosh A, Serrano AL, Oudenhoven TA, Ostrander JS, Eklund EC, Blair AF, Zanni MT. Experimental implementations of 2D IR spectroscopy through a horizontal pulse shaper design and a focal plane array detector. OPTICS LETTERS 2016; 41:524-7. [PMID: 26907414 PMCID: PMC5301998 DOI: 10.1364/ol.41.000524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aided by advances in optical engineering, two-dimensional infrared spectroscopy (2D IR) has developed into a promising method for probing structural dynamics in biophysics and material science. We report two new advances for 2D IR spectrometers. First, we report a fully reflective and totally horizontal pulse shaper, which significantly simplifies alignment. Second, we demonstrate the applicability of mid-IR focal plane arrays (FPAs) as suitable detectors in 2D IR experiments. FPAs have more pixels than conventional linear arrays and can be used to multiplex optical detection. We simultaneously measure the spectra of a reference beam, which improves the signal-to-noise by a factor of 4; and two additional beams that are orthogonally polarized probe pulses for 2D IR anisotropy experiments.
Collapse
|
43
|
Giammanco CH, Kramer PL, Yamada SA, Nishida J, Tamimi A, Fayer MD. Coupling of Carbon Dioxide Stretch and Bend Vibrations Reveals Thermal Population Dynamics in an Ionic Liquid. J Phys Chem B 2016; 120:549-56. [DOI: 10.1021/acs.jpcb.5b11454] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chiara H. Giammanco
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Patrick L. Kramer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven A. Yamada
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jun Nishida
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Amr Tamimi
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
44
|
Yuan R, Yan C, Tamimi A, Fayer MD. Molecular Anion Hydrogen Bonding Dynamics in Aqueous Solution. J Phys Chem B 2015; 119:13407-15. [DOI: 10.1021/acs.jpcb.5b08168] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rongfeng Yuan
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chang Yan
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Amr Tamimi
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
45
|
Abstract
Two-dimensional infrared (2D IR) spectroscopy has recently emerged as a powerful tool with applications in many areas of scientific research. The inherent high time resolution coupled with bond-specific spatial resolution of IR spectroscopy enable direct characterization of rapidly interconverting species and fast processes, even in complex systems found in chemistry and biology. In this minireview, we briefly outline the fundamental principles and experimental procedures of 2D IR spectroscopy. Using illustrative example studies, we explain the important features of 2D IR spectra and their capability to elucidate molecular structure and dynamics. Primarily, this minireview aims to convey the scope and potential of 2D IR spectroscopy by highlighting select examples of recent applications including the use of innate or introduced vibrational probes for the study of nucleic acids, peptides/proteins, and materials.
Collapse
Affiliation(s)
- Amanda L Le Sueur
- Department of Chemistry, Indiana University, Bloomington, Indiana, 47405, USA.
| | | | | |
Collapse
|
46
|
Structural dynamics inside a functionalized metal-organic framework probed by ultrafast 2D IR spectroscopy. Proc Natl Acad Sci U S A 2014; 111:18442-7. [PMID: 25512539 DOI: 10.1073/pnas.1422194112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The structural elasticity of metal-organic frameworks (MOFs) is a key property for their functionality. Here, we show that 2D IR spectroscopy with pulse-shaping techniques can probe the ultrafast structural fluctuations of MOFs. 2D IR data, obtained from a vibrational probe attached to the linkers of UiO-66 MOF in low concentration, revealed that the structural fluctuations have time constants of 7 and 670 ps with no solvent. Filling the MOF pores with dimethylformamide (DMF) slows the structural fluctuations by reducing the ability of the MOF to undergo deformations, and the dynamics of the DMF molecules are also greatly restricted. Methodology advances were required to remove the severe light scattering caused by the macroscopic-sized MOF particles, eliminate interfering oscillatory components from the 2D IR data, and address Förster vibrational excitation transfer.
Collapse
|
47
|
Kel O, Tamimi A, Fayer MD. The Influence of Cholesterol on Fast Dynamics Inside of Vesicle and Planar Phospholipid Bilayers Measured with 2D IR Spectroscopy. J Phys Chem B 2014; 119:8852-62. [DOI: 10.1021/jp503940k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Oksana Kel
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Amr Tamimi
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
48
|
Size-dependent ultrafast structural dynamics inside phospholipid vesicle bilayers measured with 2D IR vibrational echoes. Proc Natl Acad Sci U S A 2014; 111:918-23. [PMID: 24395796 DOI: 10.1073/pnas.1323110111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ultrafast structural dynamics inside the bilayers of dilauroylphosphatidylcholine (DLPC) and dipalmitoylphosphatidylcholine vesicles with 70, 90, and 125 nm diameters were directly measured with 2D IR vibrational echo spectroscopy. The antisymmetric CO stretch of tungsten hexacarbonyl was used as a vibrational probe and provided information on spectral diffusion (structural dynamics) in the alkyl region of the bilayers. Although the CO stretch absorption spectra remain the same, the interior structural dynamics become faster as the size of the vesicles decrease, with the size dependence greater for dipalmitoylphosphatidylcholine than for DLPC. As DLPC vesicles become larger, the interior dynamics approach those of the planar bilayer.
Collapse
|
49
|
Mukherjee SS, Skoff DR, Middleton CT, Zanni MT. Fully absorptive 3D IR spectroscopy using a dual mid-infrared pulse shaper. J Chem Phys 2013; 139:144205. [PMID: 24116612 PMCID: PMC4108792 DOI: 10.1063/1.4824638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/25/2013] [Indexed: 12/27/2022] Open
Abstract
This paper presents the implementation of 3D IR spectroscopy by adding a second pump beam to a two-beam 2D IR spectrometer. An independent mid-IR pulse shaper is used for each pump beam, which can be programmed to collect its corresponding dimension in either the frequency or time-domains. Due to the phase matching geometry employed here, absorptive 3D IR spectra are automatically obtained, since all four of the rephasing and non-rephasing signals necessary to generate absorptive spectra are collected simultaneously. Phase cycling is used to isolate the fifth-order from the third-order signals. The method is demonstrated on tungsten hexacarbonyl (W(CO)6) and dicarbonylacetylacetonato rhodium (I), for which the eigenstates are extracted up to the third excited state. Pulse shaping affords a high degree of control over 3D IR experiments by making possible mixed time- and frequency-domain experiments, fast data acquisition and straightforward implementation.
Collapse
Affiliation(s)
- Sudipta S Mukherjee
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
50
|
Kel O, Tamimi A, Thielges MC, Fayer MD. Ultrafast Structural Dynamics Inside Planar Phospholipid Multibilayer Model Cell Membranes Measured with 2D IR Spectroscopy. J Am Chem Soc 2013; 135:11063-74. [DOI: 10.1021/ja403675x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oksana Kel
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| | - Amr Tamimi
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| | - Megan C. Thielges
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| |
Collapse
|