1
|
Wan S, Xia X, Gao Y, Zhang H, Zhang Z, Wu F, Wu X, Yang D, Li T, Li J, Ni R, Dong A. Curvature-guided depletion stabilizes Kagome superlattices of nanocrystals. Science 2025; 387:978-984. [PMID: 40014713 DOI: 10.1126/science.adu4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/09/2025] [Indexed: 03/01/2025]
Abstract
Shape-anisotropic nanocrystals and patchy particles have been explored to construct complex superstructures, but most studies have focused on convex shapes. We report that nonconvex, dumbbell-shaped nanocrystals (nanodumbbells) exhibit globally interlocking self-assembly behaviors governed by curvature-guided depletion interactions. By tailoring the local curvature of nanodumbbells, we can precisely and flexibly adjust particle bonding directionality, a level of control rarely achievable with conventional convex building blocks. These nanodumbbells can undergo long-range ordered assembly into various intricate two-dimensional superlattices, including the chiral Kagome lattice. Theoretical calculations reveal that the Kagome lattice is a thermodynamically stable phase, with depletion interactions playing a crucial role in stabilizing these non-close-packed structures. The emergence of Kagome lattices and other unusual structures highlights the vast potential of nonconvex nanocrystals for creating sophisticated architectures.
Collapse
Affiliation(s)
- Siyu Wan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, China
| | - Xiuyang Xia
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Yutong Gao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, China
| | - Heyang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, China
| | - Zhebin Zhang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Fangyue Wu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, China
| | - Xuesong Wu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Tongtao Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, China
| | - Jianfeng Li
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Ran Ni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Angang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
3
|
Camerin F, Marín-Aguilar S, Dijkstra M. Depletion-induced crystallization of anisotropic triblock colloids. NANOSCALE 2024; 16:4724-4736. [PMID: 38289471 PMCID: PMC10903402 DOI: 10.1039/d3nr04816k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/19/2024] [Indexed: 03/01/2024]
Abstract
The intricate interplay between colloidal particle shape and precisely engineered interaction potentials has paved the way for the discovery of unprecedented crystal structures in both two and three dimensions. Here, we make use of anisotropic triblock colloidal particles composed of two distinct materials. The resulting surface charge heterogeneity can be exploited to generate regioselective depletion interactions and directional bonding. Using extensive molecular dynamics simulations and a dimensionality reduction analysis approach, we map out state diagrams for the self-assembly of such colloids as a function of their aspect ratio and for varying depletant features in a quasi two-dimensional set-up. We observe the formation of a wide variety of crystal structures such as a herringbone, brick-wall, tilted brick-wall, and (tilted) ladder-like structures. More specifically, we determine the optimal parameters to enhance crystallization, and investigate the nucleation process. Additionally, we explore the potential of using crystalline monolayers as templates for deposition, thereby creating complex three-dimensional structures that hold promise for future applications.
Collapse
Affiliation(s)
- Fabrizio Camerin
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- International Institute for Sustainability with Knotted Chiral MetaMatter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Susana Marín-Aguilar
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- International Institute for Sustainability with Knotted Chiral MetaMatter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
4
|
Zhang Y, Giunta G, Liang H, Dijkstra M. Shape-induced crystallization of binary DNA-functionalized nanocubes. J Chem Phys 2023; 158:2890487. [PMID: 37172219 DOI: 10.1063/5.0148139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 05/14/2023] Open
Abstract
Leveraging the anisotropic shape of DNA-functionalized nanoparticles holds potential for shape-directed crystallization of a wide collection of superlattice structures. Using coarse-grained molecular dynamics simulations, we study the self-assembly of a binary mixture of cubic gold nanoparticles, which are functionalized by complementary DNA strands. We observe the spontaneous self-assembly of simple cubic (SC), plastic body-centered tetragonal (pBCT), and compositionally disordered plastic body-centered tetragonal (d-pBCT) phases due to hybridization of the DNA strands. We systematically investigate the effect of length, grafting density, as well as rigidity of the DNA strands on the self-assembly behavior of cubic nanoparticles. We measure the potential of mean force between DNA-functionalized nanocubes for varying rigidity of the DNA strands and DNA lengths. Using free-energy calculations, we find that longer and flexible DNA strands can lead to a phase transformation from SC to the pBCT phase due to a gain in entropy arising from the orientational degrees of freedom of the nanocubes in the pBCT phase. Our results may serve as a guide for self-assembly experiments on DNA-functionalized cubic nanoparticles.
Collapse
Affiliation(s)
- Yunhan Zhang
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Giuliana Giunta
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Haojun Liang
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
5
|
Wan D. Configurational entropy of colloidal particles in a confined space. Phys Rev E 2022; 106:034609. [PMID: 36266835 DOI: 10.1103/physreve.106.034609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
We calculate the configurational entropy of colloidal particles in a confined geometry interacting as hard disks using Monte Carlo integration. In particular, we consider systems with three kinds of boundary conditions: hard, periodic, and spherical. For small to moderate packing fraction ϕ values, we find the entropies per particle for systems with the periodic and the spherical boundary conditions tend to reach the same value with the increase of the particle number N, while that for the system with the hard boundary conditions still has obvious differences compared to them within the studied N range. Surprisingly, despite the small system sizes, the estimated entropies per particle at infinite system size from extrapolations in the periodic and spherical systems are in reasonable agreement with that calculated using thermodynamic integration. Besides, as N increases we find the pair correlation function begins to exhibit similar features as that of a thermally equilibrated hard-disk fluid at the same packing fraction. Our findings may contribute to a better understanding of how the configurational entropy changes with the system size and the influence of boundary conditions, and provide insights relevant to engineering particles in confined spaces.
Collapse
Affiliation(s)
- Duanduan Wan
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Lyu J, Chaâbani W, Modin E, Chuvilin A, Bizien T, Smallenburg F, Impéror-Clerc M, Constantin D, Hamon C. Double-Lattice Packing of Pentagonal Gold Bipyramids in Supercrystals with Triclinic Symmetry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200883. [PMID: 35324025 DOI: 10.1002/adma.202200883] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Pentagonal packing is a long-standing issue and a rich mathematical topic, brought to the fore by recent progress in nanoparticle design. Gold pentagonal bipyramids combine fivefold symmetry and anisotropy and their section varies along the length. In this work, colloidal supercrystals of pentagonal gold bipyramids are obtained in a compact arrangement that generalizes the optimal packing of regular pentagons in the plane. Multimodal investigations reveal a two-particle unit cell with triclinic symmetry, a lower symmetry than that of the building blocks. Monte Carlo computer simulations show that this lattice achieves the densest possible packing. Going beyond pentagons, further simulations show an odd-even effect of the number of sides on the packing: odd-sided bipyramids are non-centrosymmetric and require the double-lattice arrangement to recover inversion symmetry. The supercrystals display a facet-dependent optical response that is promising for sensing, metamaterials applications, and for fundamental studies of self-assembly processes.
Collapse
Affiliation(s)
- Jieli Lyu
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Wajdi Chaâbani
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Evgeny Modin
- Electron Microscopy Laboratory, CIC NanoGUNE BRTA, Tolosa Hiribidea, 76, Donostia - San Sebastian, 20019, Spain
| | - Andrey Chuvilin
- Electron Microscopy Laboratory, CIC NanoGUNE BRTA, Tolosa Hiribidea, 76, Donostia - San Sebastian, 20019, Spain
- Basque Foundation of Science, IKERBASQUE, Bilbao, 48013, Spain
| | - Thomas Bizien
- SWING beamline, SOLEIL Synchrotron, Gif-sur-Yvette, 911190, France
| | - Frank Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Marianne Impéror-Clerc
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Doru Constantin
- Institut Charles Sadron, CNRS and Université de Strasbourg, Strasbourg, 67034, France
| | - Cyrille Hamon
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| |
Collapse
|
7
|
Wood EL, Greco C, Ivanov DA, Kremer K, Daoulas KC. Mesoscopic Modeling of a Highly-Ordered Sanidic Polymer Mesophase and Comparison With Experimental Data. J Phys Chem B 2022; 126:2285-2298. [PMID: 35290739 PMCID: PMC8958507 DOI: 10.1021/acs.jpcb.1c10599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Board-shaped polymers
form sanidic mesophases: assemblies of parallel
lamellae of stacked polymer backbones separated by disordered side
chains. Sanidics vary significantly with respect to polymer order
inside their lamellae, making them “stepping stones”
toward the crystalline state. Therefore, they are potentially interesting
for studying crystallization and technological applications. Building
on earlier mesoscopic models of the most disordered sanidics Σd, we focus on the other extreme, near-crystalline order, and
develop a generic model that captures a highly ordered Σr mesophase. Polymers are described by generic hindered-rotation
chains. Anisotropic nonbonded potentials, with strengths comparable
to the thermal energy, mimic board-like monomer shapes. Lamellae equilibrated
with Monte Carlo simulations, for a broad range of model parameters,
have intralamellar order typical for Σr mesophases:
periodically stacked polymers that are mutually registered along their
backbones. Our mesophase shows registration on both monomer and chain
levels. We calculate scattering patterns and compare with data published
for highly ordered sanidic mesophases of two different polymers: polyesters
and polypeptoids. Most of the generic structural features that were
identified in these experiments are present in our model. However,
our mesophase has correlations between chains located in different
lamellae and is therefore closer to the crystalline state than the
experimental samples.
Collapse
Affiliation(s)
- Emma L Wood
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Cristina Greco
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Dimitri A Ivanov
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Semenov Prospect 1, 142432 Chernogolovka, Russia.,Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.,Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361, 15 Jean Starcky, F-68057 Mulhouse, France.,Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kostas Ch Daoulas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
8
|
Prajwal BP, Huang JY, Ramaswamy M, Stroock AD, Hanrath T, Cohen I, Escobedo FA. Re-entrant transition as a bridge of broken ergodicity in confined monolayers of hexagonal prisms and cylinders. J Colloid Interface Sci 2021; 607:1478-1490. [PMID: 34592545 DOI: 10.1016/j.jcis.2021.09.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
The entropy-driven monolayer assembly of hexagonal prisms and cylinders was studied under hard slit confinement. At the conditions investigated, the particles have two distinct and dynamically disconnected rotational states: unflipped and flipped, depending on whether their circular/hexagonal face is parallel or perpendicular to the wall plane. Importantly, these two rotational states cast distinct projection areas over the wall plane that favor either hexagonal or tetragonal packing. Monte Carlo simulations revealed a re-entrant melting transition where an intervening disordered Flipped-Unflipped (FUN) phase is sandwiched between a fourfold tetratic phase at high concentrations and a sixfold triangular solid at intermediate concentrations. The FUN phase contains a mixture of flipped and unflipped particles and is translationally and orientationally disordered. Complementary experiments were conducted with photolithographically fabricated cylindrical microparticles confined in a wedge cell. Both simulations and experiments show the formation of phases with comparable fraction of flipped particles and structure, i.e., the FUN phase, triangular solid, and tetratic phase, indicating that both approaches sample analogous basins of particle-orientation phase-space. The phase behavior of hexagonal prisms in a soft-repulsive wall model was also investigated to exemplify how tunable particle-wall interactions can provide an experimentally viable strategy to dynamically bridge the flipped and unflipped states.
Collapse
Affiliation(s)
- B P Prajwal
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jen-Yu Huang
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Meera Ramaswamy
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Abraham D Stroock
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tobias Hanrath
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Fernando A Escobedo
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
Dijkstra M, Luijten E. From predictive modelling to machine learning and reverse engineering of colloidal self-assembly. NATURE MATERIALS 2021; 20:762-773. [PMID: 34045705 DOI: 10.1038/s41563-021-01014-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
An overwhelming diversity of colloidal building blocks with distinct sizes, materials and tunable interaction potentials are now available for colloidal self-assembly. The application space for materials composed of these building blocks is vast. To make progress in the rational design of new self-assembled materials, it is desirable to guide the experimental synthesis efforts by computational modelling. Here, we discuss computer simulation methods and strategies used for the design of soft materials created through bottom-up self-assembly of colloids and nanoparticles. We describe simulation techniques for investigating the self-assembly behaviour of colloidal suspensions, including crystal structure prediction methods, phase diagram calculations and enhanced sampling techniques, as well as their limitations. We also discuss the recent surge of interest in machine learning and reverse-engineering methods. Although their implementation in the colloidal realm is still in its infancy, we anticipate that these data-science tools offer new paradigms in understanding, predicting and (inverse) design of novel colloidal materials.
Collapse
Affiliation(s)
- Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterial Science, Department of Physics, Utrecht University, Utrecht, The Netherlands.
| | - Erik Luijten
- Departments of Materials Science and Engineering, Engineering Sciences & Applied Mathematics, Chemistry and Physics & Astronomy, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
10
|
Neophytou A, Manoharan VN, Chakrabarti D. Self-Assembly of Patchy Colloidal Rods into Photonic Crystals Robust to Stacking Faults. ACS NANO 2021; 15:2668-2678. [PMID: 33448214 DOI: 10.1021/acsnano.0c07824] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Diamond-structured colloidal photonic crystals are much sought-after for their applications in visible light management because of their ability to support a complete photonic band gap (PBG). However, their realization via self-assembly pathways is a long-standing challenge. This challenge is rooted in three fundamental problems: the design of building blocks that assemble into diamond-like structures, the sensitivity of the PBG to stacking faults, and ensuring that the PBG opens at an experimentally attainable refractive index. Here we address these problems simultaneously using a multipronged computational approach. We use reverse engineering to establish the design principles for the rod-connected diamond structure (RCD), the so-called "champion" photonic crystal. We devise two distinct self-assembly routes for designer triblock patchy colloidal rods, both proceeding via tetrahedral clusters to yield a mixed phase of cubic and hexagonal polymorphs closely related to RCD. We use Monte Carlo simulations to show how these routes avoid a metastable amorphous phase. Finally, we show that both the polymorphs support spectrally overlapping PBGs. Importantly, randomly stacked hybrids of these polymorphs also display PBGs, thus circumventing the requirement of polymorph selection in a scalable fabrication method.
Collapse
Affiliation(s)
- Andreas Neophytou
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Vinothan N Manoharan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
11
|
van Damme R, Coli GM, van Roij R, Dijkstra M. Classifying Crystals of Rounded Tetrahedra and Determining Their Order Parameters Using Dimensionality Reduction. ACS NANO 2020; 14:15144-15153. [PMID: 33103878 PMCID: PMC7690044 DOI: 10.1021/acsnano.0c05288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Using simulations we study the phase behavior of a family of hard spherotetrahedra, a shape that interpolates between tetrahedra and spheres. We identify 13 close-packed structures, some with packings that are significantly denser than previously reported. Twelve of these are crystals with unit cells of N = 2 or N = 4 particles, but in the shape regime of slightly rounded tetrahedra we find that the densest structure is a quasicrystal approximant with a unit cell of N = 82 particles. All 13 structures are also stable below close packing, together with an additional 14th plastic crystal phase at the sphere side of the phase diagram, and upon sufficient dilution to packing fractions below 50-60% all structures melt. Interestingly, however, upon compressing the fluid phase, self-assembly takes place spontaneously only at the tetrahedron and the sphere side of the family but not in an intermediate regime of tetrahedra with rounded edges. We describe the local environment of each particle by a set of l-fold bond orientational order parameters q̅l, which we use in an extensive principal component analysis. We find that the total packing fraction as well as several particular linear combinations of q̅l rather than individual q̅l's are optimally distinctive, specifically the differences q̅4 - q̅6 for separating tetragonal from hexagonal structures and q̅4-q̅8 for distinguishing tetragonal structures. We argue that these characteristic combinations are also useful as reliable order parameters in nucleation studies, enhanced sampling techniques, or inverse-design methods involving odd-shaped particles in general.
Collapse
Affiliation(s)
- Robin van Damme
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Gabriele M. Coli
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - René van Roij
- Institute
for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
12
|
Sato M. Effect of Patch Area and Interaction Length on Clusters and Structures Formed by One-Patch Particles in Thin Systems. ACS OMEGA 2020; 5:28812-28822. [PMID: 33195934 PMCID: PMC7659161 DOI: 10.1021/acsomega.0c04159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Assuming that the interaction between particles is given by the Kern-Frenkel potential, Monte Carlo simulations are performed to study the clusters and structures formed by one-patch particles in a thin space between two parallel walls. In isothermal-isochoric systems with a short interaction length, tetrahedral tetramers, octahedral hexamers, and pentagonal dipyramidal heptamers are created with increasing patch area. In isothermal-isobaric systems, the double layers of a triangular lattice, which is the (111) face of the face-centered cubic (fcc) lattice, form when the pressure is high. For a long interaction length, a different type of cluster, trigonal prismatic hexamers, is created. The structures in the double layers also changed as follows: a simple hexagonal lattice or square lattice, which is the (100) face of the fcc structure, is created in isothermal-isobaric systems.
Collapse
|
13
|
Fayen E, Jagannathan A, Foffi G, Smallenburg F. Infinite-pressure phase diagram of binary mixtures of (non)additive hard disks. J Chem Phys 2020; 152:204901. [DOI: 10.1063/5.0008230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Etienne Fayen
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Anuradha Jagannathan
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Giuseppe Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Frank Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
14
|
Solvent Effects on Catechol Crystal Habits and Aspect Ratios: A Combination of Experiments and Molecular Dynamics Simulation Study. CRYSTALS 2020. [DOI: 10.3390/cryst10040316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This work could help to better understand the solvent effects on crystal habits and aspect ratio changes at the molecular level, which provide some guidance for solvent selection in industrial crystallization processes. With the catechol crystal habits acquired using both experimental and simulation methods in isopropanol, methyl acetate and ethyl acetate, solvent effects on crystal morphology were explored based on the modified attachment energy model. Firstly, morphologically dominant crystal faces were obtained with the predicted crystal habit in vacuum. Then, modified attachment energies were calculated by the molecular dynamics simulation to modify the crystal shapes in a real solvent environment, and the simulation results were in agreement with the experimental ones. Meanwhile, the surface properties such as roughness and the diffusion coefficient were introduced to analyze the solvent adsorption behaviors and the radial distribution function curves were generated to distinguish diverse types of interactions like hydrogen bonds and van der Waals forces. Results show that the catechol crystal habits were affected by the combination of the attachment energy, surface structures and molecular interaction types. Moreover, the changing aspect ratios of catechol crystals are closely related to the existence of hydrogen bonds which contribute to growth inhibition on specific faces.
Collapse
|
15
|
Pretti E, Shen VK, Mittal J, Mahynski NA. Symmetry-Based Crystal Structure Enumeration in Two Dimensions. J Phys Chem A 2020; 124:3276-3285. [DOI: 10.1021/acs.jpca.0c00846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evan Pretti
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015-4791, United States
| | - Vincent K. Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015-4791, United States
| | - Nathan A. Mahynski
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| |
Collapse
|
16
|
Wan D, Du CX, van Anders G, Glotzer SC. FCC ↔ BCC Phase Transitions in Convex and Concave Hard Particle Systems. J Phys Chem B 2019; 123:9038-9043. [PMID: 31573808 DOI: 10.1021/acs.jpcb.9b08310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Solid-solid transitions are ubiquitous in nature and are important for technology. Understanding and exploiting transitions are complicated by the fact that multiple transition pathways can exist between small unit cell structures such as face-centered cubic (FCC) and body-centered cubic (BCC). By symmetry, FCC ↔ BCC transitions can occur via a pair of continuous transitions or via a discontinuous, first-order transition. However, how to, or whether it is possible to, select between pathways is unclear. Here, we use particle shape change to induce FCC ↔ BCC transitions in systems where particle valence is malleable. Though some particle shapes can eliminate metastable HCP stacking faults, we find that for both convex and concave particles, transitions are first-order.
Collapse
Affiliation(s)
- Duanduan Wan
- School of Physics and Technology , Wuhan University , Wuhan 430072 , China
| | | | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | | |
Collapse
|
17
|
Mahynski NA, Pretti E, Shen VK, Mittal J. Using symmetry to elucidate the importance of stoichiometry in colloidal crystal assembly. Nat Commun 2019; 10:2028. [PMID: 31048700 PMCID: PMC6497718 DOI: 10.1038/s41467-019-10031-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/09/2019] [Indexed: 01/05/2023] Open
Abstract
We demonstrate a method based on symmetry to predict the structure of self-assembling, multicomponent colloidal mixtures. This method allows us to feasibly enumerate candidate structures from all symmetry groups and is many orders of magnitude more computationally efficient than combinatorial enumeration of these candidates. In turn, this permits us to compute ground-state phase diagrams for multicomponent systems. While tuning the interparticle potentials to produce potentially complex interactions represents the conventional route to designing exotic lattices, we use this scheme to demonstrate that simple potentials can also give rise to such structures which are thermodynamically stable at moderate to low temperatures. Furthermore, for a model two-dimensional colloidal system, we illustrate that lattices forming a complete set of 2-, 3-, 4-, and 6-fold rotational symmetries can be rationally designed from certain systems by tuning the mixture composition alone, demonstrating that stoichiometric control can be a tool as powerful as directly tuning the interparticle potentials themselves.
Collapse
Affiliation(s)
- Nathan A Mahynski
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8320, USA.
| | - Evan Pretti
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA, 18015-4791, USA
| | - Vincent K Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8320, USA
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA, 18015-4791, USA.
| |
Collapse
|
18
|
Greco C, Melnyk A, Kremer K, Andrienko D, Daoulas KC. Generic Model for Lamellar Self-Assembly in Conjugated Polymers: Linking Mesoscopic Morphology and Charge Transport in P3HT. Macromolecules 2019; 52:968-981. [PMID: 30792553 PMCID: PMC6376450 DOI: 10.1021/acs.macromol.8b01863] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/17/2018] [Indexed: 01/27/2023]
Abstract
We develop a generic coarse-grained model of soluble conjugated polymers, capable of describing their self-assembly into a lamellar mesophase. Polymer chains are described by a hindered-rotation model, where interaction centers represent entire repeat units, including side chains. We introduce soft anisotropic nonbonded interactions to mimic the potential of mean force between atomistic repeat units. The functional form of this potential reflects the symmetry of the molecular order in a lamellar mesophase. The model can generate both nematic and lamellar (sanidic smectic) molecular arrangements. We parametrize this model for a soluble conjugated polymer poly(3-hexylthiophene) (P3HT) and demonstrate that the simulated lamellar mesophase matches morphologies of low molecular weight P3HT, experimentally observed at elevated temperatures. A qualitative charge-transport model allows us to link local chain conformations and mesoscale order to charge transport. In particular, it shows how coarsening of lamellar domains and chain extension increase the charge carrier mobility. By modeling large systems and long chains, we can capture transport between lamellar layers, which is due to rare, but thermodynamically allowed, backbone bridges between neighboring layers.
Collapse
Affiliation(s)
- Cristina Greco
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Anton Melnyk
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kostas Ch. Daoulas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
19
|
Torquato S. Perspective: Basic understanding of condensed phases of matter via packing models. J Chem Phys 2018; 149:020901. [DOI: 10.1063/1.5036657] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- S. Torquato
- Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
20
|
Tasios N, Dijkstra M. A simulation study on the phase behavior of hard rhombic platelets. J Chem Phys 2018; 146:144901. [PMID: 28411607 DOI: 10.1063/1.4979517] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Using Monte Carlo simulations, we investigate the phase behavior of hard rhombic platelets as a function of the thickness of the platelets, T. The phase diagram displays a columnar phase and a crystal phase in which the platelets are stacked in columns that are arranged in a two-dimensional lattice. We find that the shape of the platelets determines the symmetry of the two-dimensional lattice, i.e., rhombic platelets form an oblique columnar phase and a simple monoclinic crystal phase. For sufficiently thick platelets, i.e., for a thickness-to-length ratio T/L>0.17, we find only an isotropic fluid, an oblique columnar phase, and a monoclinic crystal phase. Surprisingly, for an intermediate plate thickness, 0.083<T/L<0.17, we also find a region in between the isotropic (or nematic) phase and the columnar phase, where the smectic phase is stable. For sufficiently thin platelets, T/L<0.13, the phase diagram displays a nematic phase. With the exception of the smectic phase, our results resemble the phase behavior of discotic particles. Our results may guide the synthesis and future experiments on rhombic nanoplatelets.
Collapse
Affiliation(s)
- N Tasios
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - M Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
21
|
Abstract
Water is the most common and yet least understood material on Earth. Despite its simplicity, water tends to form tetrahedral order locally by directional hydrogen bonding. This structuring is known to be responsible for a vast array of unusual properties, e.g., the density maximum at 4 °C, which play a fundamental role in countless natural and technological processes, with the Earth’s climate being one of the most important examples. By systematically tuning the degree of tetrahedrality, we succeed in continuously interpolating between water-like behavior and simple liquid-like behavior. Our approach reveals what physical factors make water so anomalous and special even compared with other tetrahedral liquids. Tetrahedral interactions describe the behavior of the most abundant and technologically important materials on Earth, such as water, silicon, carbon, germanium, and countless others. Despite their differences, these materials share unique common physical behaviors, such as liquid anomalies, open crystalline structures, and extremely poor glass-forming ability at ambient pressure. To reveal the physical origin of these anomalies and their link to the shape of the phase diagram, we systematically study the properties of the Stillinger–Weber potential as a function of the strength of the tetrahedral interaction λ. We uncover a unique transition to a reentrant spinodal line at low values of λ, accompanied with a change in the dynamical behavior, from non-Arrhenius to Arrhenius. We then show that a two-state model can provide a comprehensive understanding on how the thermodynamic and dynamic anomalies of this important class of materials depend on the strength of the tetrahedral interaction. Our work establishes a deep link between the shape of the phase diagram and the thermodynamic and dynamic properties through local structural ordering in liquids and hints at why water is so special among all substances.
Collapse
|
22
|
Gabriëlse A, Löwen H, Smallenburg F. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1280. [PMID: 29112168 PMCID: PMC5706227 DOI: 10.3390/ma10111280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/22/2017] [Accepted: 11/03/2017] [Indexed: 01/07/2023]
Abstract
In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO) lattices not previously considered for the square shoulder model.
Collapse
Affiliation(s)
- Alexander Gabriëlse
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Frank Smallenburg
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
23
|
McBride JM, Avendaño C. Phase behaviour and gravity-directed self assembly of hard convex spherical caps. SOFT MATTER 2017; 13:2085-2098. [PMID: 28225134 DOI: 10.1039/c6sm02678h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigate the phase behaviour and self-assembly of convex spherical caps using Monte Carlo simulations. This model is used to represent the main features observed in experimental colloidal particles with mushroom-cap shape [Riley et al., Langmuir, 2010, 26, 1648]. The geometry of this non-centrosymmetric convex model is fully characterized by the aspect ratio χ* defined as the spherical cap height to diameter ratio. We use NPT Monte Carlo simulations combined with free energy calculations to determine the most stable crystal structures and the phase behaviour of convex spherical caps with different aspect ratios. We find a variety of crystal structures at each aspect ratio, including plastic and dimer-based crystals; small differences in chemical potential between the structures with similar morphology suggest that convex spherical caps have the tendency to form polycrystalline phases rather than crystallising into a single uniform structure. With the exception of plastic crystals observed at large aspect ratios (χ* > 0.75), crystallisation kinetics seem to be too slow, hindering the spontaneous formation of ordered structures. As an alternative, we also present a study of directing the self-assembly of convex spherical caps via sedimentation onto solid substrates. This study contributes to show how small changes to particle shape can significantly alter the self-assembly of crystal structures, and how a simple gravity field and a template can substantially enhance the process.
Collapse
Affiliation(s)
- John M McBride
- School of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, UK.
| | - Carlos Avendaño
- School of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, UK.
| |
Collapse
|
24
|
Douglass I, Mayger H, Hudson T, Harrowell P. The stabilization of tubular crystals in mixtures of spherical particles. SOFT MATTER 2017; 13:1344-1351. [PMID: 28106204 DOI: 10.1039/c6sm02636b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Novel crystal structures in binary atomic mixtures arise when the attractive well is wide enough to allow double occupancy by small particles. The resulting crystals consist of ordered packings of self assembled linear structures comprised of a cylindrical tube of large particles enclosing a close packed core of small particles that corresponds to a stacking of overlapping icosahedra. We show that the stability of these structures depends on two essential features of the spherically symmetric pairwise interactions: (i) a radius ratio between 0.414 and 0.588, and (ii) a width w of the attractive well in the interaction between unlike particles that satisfies w > σSS where σSS is the diameter of the small particle.
Collapse
Affiliation(s)
- Ian Douglass
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | - Helen Mayger
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | - Toby Hudson
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | - Peter Harrowell
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
25
|
Akahane K, Russo J, Tanaka H. A possible four-phase coexistence in a single-component system. Nat Commun 2016; 7:12599. [PMID: 27558452 PMCID: PMC5007327 DOI: 10.1038/ncomms12599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/15/2016] [Indexed: 01/24/2023] Open
Abstract
For different phases to coexist in equilibrium at constant temperature T and pressure P, the condition of equal chemical potential μ must be satisfied. This condition dictates that, for a single-component system, the maximum number of phases that can coexist is three. Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules of thermodynamics. Here we make use of the fact that, by varying model parameters, the Gibbs phase rule can be generalized so that four phases can coexist even in single-component systems. To systematically search for the quadruple point, we use a monoatomic system interacting with a Stillinger-Weber potential with variable tetrahedrality. Our study indicates that the quadruple point provides flexibility in controlling multiple equilibrium phases and may be realized in systems with tunable interactions, which are nowadays feasible in several soft matter systems such as patchy colloids.
Collapse
Affiliation(s)
- Kenji Akahane
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - John Russo
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | - Hajime Tanaka
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
26
|
Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116:11220-89. [PMID: 27552640 DOI: 10.1021/acs.chemrev.6b00196] [Citation(s) in RCA: 1150] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micrometer colloids and block copolymer assembly. We outline the extensive catalog of superlattices prepared to date using hydrocarbon-capped nanocrystals with spherical, polyhedral, rod, plate, and branched inorganic core shapes, as well as those obtained by mixing combinations thereof. We also provide an overview of structural defects in nanocrystal superlattices. We then explore the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies. We end with a discussion of the unique optical, magnetic, electronic, and catalytic properties of ordered nanocrystal superlattices, and the coming advances required to make use of this new class of solids.
Collapse
Affiliation(s)
- Michael A Boles
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander University Erlangen-Nürnberg , 91052 Erlangen, Germany.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Lab , Argonne, Illinois 60439, United States
| |
Collapse
|
27
|
Castelli A, de Graaf J, Prato M, Manna L, Arciniegas MP. Tic-Tac-Toe Binary Lattices from the Interfacial Self-Assembly of Branched and Spherical Nanocrystals. ACS NANO 2016; 10:4345-53. [PMID: 27027973 DOI: 10.1021/acsnano.5b08018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The self-organization of nanocrystals has proven to be a versatile route to achieve increasingly sophisticated structures of materials, where the shape and properties of individual particles impact the final functionalities. Recent works have addressed this topic by combining various shapes to achieve more complex arrangements of particles than are possible in single-component samples. However, the ability to create intricate architectures over large regions by exploiting the shape of multiply branched nanocrystals to host a second component remains unexplored. Here, we show how the concave shape of a branched nanocrystal, the so-called octapod, is able to anchor a sphere. The two components self-assemble into a locally ordered monolayer consisting of an intercalated square lattice of octapods and spheres, which is reminiscent of the "tic-tac-toe" game. These tic-tac-toe domains form through an interfacial self-assembly that occurs by the dewetting of a hexane layer containing both particle types. By varying the experimental conditions and performing molecular dynamics simulations, we show that the ligands coating the octapods are crucial to the formation of this structure. We find that the tendency of an octapod to form an interlocking-type structure with a second octapod strongly depends on the ligand shell of the pods. Breaking this tendency by ligand exchange allows the octapods to assemble into a more relaxed configuration, which is able to form a lock-and-key-type structure with a sphere, when they have a suitable size ratio. Our findings provide an example of a more versatile use of branched nanocrystals in self-assembled functional materials.
Collapse
Affiliation(s)
- Andrea Castelli
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| | - Joost de Graaf
- Institute for Computational Physics (ICP), University of Stuttgart , Allmandring 3, 70569 Stuttgart, Germany
| | - Mirko Prato
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| | - Liberato Manna
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| | - Milena P Arciniegas
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| |
Collapse
|
28
|
Wilson BA, Gelb LD, Nielsen SO. Nested sampling of isobaric phase space for the direct evaluation of the isothermal-isobaric partition function of atomic systems. J Chem Phys 2016; 143:154108. [PMID: 26493898 DOI: 10.1063/1.4933309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nested Sampling (NS) is a powerful athermal statistical mechanical sampling technique that directly calculates the partition function, and hence gives access to all thermodynamic quantities in absolute terms, including absolute free energies and absolute entropies. NS has been used predominately to compute the canonical (NVT) partition function. Although NS has recently been used to obtain the isothermal-isobaric (NPT) partition function of the hard sphere model, a general approach to the computation of the NPT partition function has yet to be developed. Here, we describe an isobaric NS (IBNS) method which allows for the computation of the NPT partition function of any atomic system. We demonstrate IBNS on two finite Lennard-Jones systems and confirm the results through comparison to parallel tempering Monte Carlo. Temperature-entropy plots are constructed as well as a simple pressure-temperature phase diagram for each system. We further demonstrate IBNS by computing part of the pressure-temperature phase diagram of a Lennard-Jones system under periodic boundary conditions.
Collapse
Affiliation(s)
- Blake A Wilson
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Lev D Gelb
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Steven O Nielsen
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
29
|
Piastra M, Virga EG. Explicit excluded volume of cylindrically symmetric convex bodies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062503. [PMID: 26172727 DOI: 10.1103/physreve.91.062503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 06/04/2023]
Abstract
We represent explicitly the excluded volume V(e){B(1),B(2)} of two generic cylindrically symmetric, convex rigid bodies, B(1) and B(2), in terms of a family of shape functionals evaluated separately on B(1) and B(2). We show that V(e){B(1),B(2)} fails systematically to feature a dipolar component, thus making illusory the assignment of any shape dipole to a tapered body in this class. The method proposed here is applied to cones and validated by a shape-reconstruction algorithm. It is further applied to spheroids (ellipsoids of revolution), for which it shows how some analytic estimates already regarded as classics should indeed be emended.
Collapse
Affiliation(s)
- Marco Piastra
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università di Pavia, via Ferrata 1, I-27100 Pavia, Italy
| | - Epifanio G Virga
- Dipartimento di Matematica, Università di Pavia, Via Ferrata 5, I-27100 Pavia, Italy
| |
Collapse
|
30
|
Gantapara AP, de Graaf J, van Roij R, Dijkstra M. Phase behavior of a family of truncated hard cubes. J Chem Phys 2015; 142:054904. [DOI: 10.1063/1.4906753] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
31
|
Abstract
Self-assembly of polyhedral-shaped particles has attracted huge interest with the advent of new synthesis methods that realize these faceted particles in the lab. Recent studies have shown that polyhedral-shaped particles exhibit a rich phase behavior by excluded volume interactions alone; some of these particles are even alleged to show a transition to a glass phase by quenching the liquid sufficiently fast beyond the glass transition (supercooling), such that the formation of structures with long-range order is suppressed. Despite the recent progress, no study has been made on the glass formation of polyhedral-shaped particles. Here, we study the glass behavior of polyhedral particles using advanced Monte Carlo methods. We investigate the formation of a glass of monodisperse hard polyhedral-shaped particles, namely, octahedra, tetrahedra, and triangular cupola, using simulations. Finally, the fragility of these particles is determined and compared to that of a polydisperse hard-sphere system.
Collapse
Affiliation(s)
- Nikos Tasios
- Debye Institute for Nanomaterial Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Anjan Prasad Gantapara
- Debye Institute for Nanomaterial Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Debye Institute for Nanomaterial Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
32
|
Dijkstra M. Entropy-Driven Phase Transitions in Colloids: From spheres to anisotropic particles. ADVANCES IN CHEMICAL PHYSICS 2014. [DOI: 10.1002/9781118949702.ch2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Díaz Ortiz A, Arnold B, Bumstead M, Turak A. Steric self-assembly of laterally confined organic semiconductor molecule analogues. Phys Chem Chem Phys 2014; 16:20228-35. [PMID: 25138315 DOI: 10.1039/c4cp02331e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Self-assembly of planar molecules can be a critical route to control morphology in organic optoelectronic systems. In this study, Monte Carlo simulations were performed with polygonal disc analogues to planar semiconducting molecules under confinement. By examining statistically the molecular density and configurations of such analogues, we have observed that the symmetry of the confining medium can have a greater impact on the final densified particle configurations than the intramolecular interactions. Using the steric frustration imparted by confinement, novel self-assembled (partially) ordered phases are available. Our Monte Carlo simulations suggest new avenues to control ordering and morphology of planar molecules, which are critical for high-performance organic optoelectronic devices.
Collapse
|
34
|
DeSantis CJ, Sue AC, Radmilovic A, Liu H, Losovyj YB, Skrabalak SE. Shaping the synthesis and assembly of symmetrically stellated Au/Pd nanocrystals with aromatic additives. NANO LETTERS 2014; 14:4145-4150. [PMID: 24915627 DOI: 10.1021/nl501802u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Au/Pd octopods were synthesized with enhanced sample homogeneity through the use of aromatic additives. This increase in sample monodispersity facilitates large-area periodic assembly of stellated metal nanostructures for the first time. The aromatic additives were also found to influence the structures of the stellated nanocrystals with subtle shape modifications observed that can alter the packing arrangement of the Au/Pd octopods. These results indicate the possibility of tailored assembly of stellated nanostructures, which would be useful for optical applications that require strong and predictable coupling between plasmonic building blocks.
Collapse
|
35
|
Baule A, Makse HA. Fundamental challenges in packing problems: from spherical to non-spherical particles. SOFT MATTER 2014; 10:4423-4429. [PMID: 24898797 DOI: 10.1039/c3sm52783b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Random packings of objects of a particular shape are ubiquitous in science and engineering. However, such jammed matter states have eluded any systematic theoretical treatment due to the strong positional and orientational correlations involved. In recent years progress on a fundamental description of jammed matter could be made by starting from a constant volume ensemble in the spirit of conventional statistical mechanics. Recent work has shown that this approach, first introduced by S. F. Edwards more than two decades ago, can be cast into a predictive framework to calculate the packing fractions of both spherical and non-spherical particles.
Collapse
Affiliation(s)
- Adrian Baule
- School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | |
Collapse
|
36
|
van der Stam W, Gantapara AP, Akkerman QA, Soligno G, Meeldijk JD, van Roij R, Dijkstra M, de Mello Donega C. Self-assembly of colloidal hexagonal bipyramid- and bifrustum-shaped ZnS nanocrystals into two-dimensional superstructures. NANO LETTERS 2014; 14:1032-7. [PMID: 24433112 DOI: 10.1021/nl4046069] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present a combined experimental, theoretical, and simulation study on the self-assembly of colloidal hexagonal bipyramid- and hexagonal bifrustum-shaped ZnS nanocrystals (NCs) into two-dimensional superlattices. The simulated NC superstructures are in good agreement with the experimental ones. This shows that the self-assembly process is primarily driven by minimization of the interfacial free-energies and maximization of the packing density. Our study shows that a small truncation of the hexagonal bipyramids is sufficient to change the symmetry of the resulting superlattice from hexagonal to tetragonal, highlighting the crucial importance of precise shape control in the fabrication of functional metamaterials by self-assembly of colloidal NCs.
Collapse
Affiliation(s)
- Ward van der Stam
- Condensed Matter and Interfaces and §Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University , 3508 TA Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Preisler Z, Vissers T, Smallenburg F, Munaò G, Sciortino F. Phase diagram of one-patch colloids forming tubes and lamellae. J Phys Chem B 2013; 117:9540-7. [PMID: 23902159 DOI: 10.1021/jp404053t] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We numerically calculate the equilibrium phase diagram of one-patch particles with 30% patch coverage. It has been previously shown that in the fluid phase these particles organize into extremely long tubelike aggregates (G. Munaò et al. Soft Matter 2013, 9, 2652). Here, we demonstrate by means of free-energy calculations that such a disordered tube phase, despite forming spontaneously from the fluid phase below a density-dependent temperature, is always metastable against a lamellar crystal. We also show that a crystal of infinitely long packed tubes is thermodynamically stable, but only at high pressure. The full phase diagram of the model, beside the fluid phase, displays four different stable crystals. A gas-liquid critical point, and hence a liquid phase, is not detected.
Collapse
Affiliation(s)
- Zdenek Preisler
- Dipartimento di Fisica, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | | | | | | | | |
Collapse
|
38
|
Baule A, Mari R, Bo L, Portal L, Makse HA. Mean-field theory of random close packings of axisymmetric particles. Nat Commun 2013; 4:2194. [DOI: 10.1038/ncomms3194] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/25/2013] [Indexed: 01/23/2023] Open
|
39
|
Gantapara AP, de Graaf J, van Roij R, Dijkstra M. Phase diagram and structural diversity of a family of truncated cubes: degenerate close-packed structures and vacancy-rich states. PHYSICAL REVIEW LETTERS 2013; 111:015501. [PMID: 23863011 DOI: 10.1103/physrevlett.111.015501] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Indexed: 06/02/2023]
Abstract
Using Monte Carlo simulations and free-energy calculations, we determine the phase diagram of a family of truncated hard cubes, where the shape evolves smoothly from a cube via a cuboctahedron to an octahedron. A remarkable diversity in crystal phases and close-packed structures is found, including a fully degenerate crystal structure, several plastic crystals, as well as vacancy-stabilized crystal phases, all depending sensitively on the precise particle shape. Our results illustrate the intricate relation between phase behavior and building-block shape, and can guide future experimental studies on polyhedral-shaped nanoparticles.
Collapse
Affiliation(s)
- Anjan P Gantapara
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Vissers T, Preisler Z, Smallenburg F, Dijkstra M, Sciortino F. Predicting crystals of Janus colloids. J Chem Phys 2013; 138:164505. [DOI: 10.1063/1.4801438] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
41
|
Qi W, de Graaf J, Qiao F, Marras S, Manna L, Dijkstra M. Phase diagram of octapod-shaped nanocrystals in a quasi-two-dimensional planar geometry. J Chem Phys 2013; 138:154504. [DOI: 10.1063/1.4799269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|