1
|
Poincloux S, Takeuchi KA. Rigidity transition of a highly compressible granular medium. Proc Natl Acad Sci U S A 2024; 121:e2408706121. [PMID: 39602252 PMCID: PMC11626199 DOI: 10.1073/pnas.2408706121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
A wide range of disordered materials, from biological to geological assemblies, feature discrete elements undergoing large shape changes. How significant geometrical variations at the microscopic scale affect the response of the assembly, in particular rigidity transitions, is an ongoing challenge in soft matter physics. However, the lack of a model granular-like experimental system featuring large and versatile particle deformability impedes advances. Here, we explore the oscillatory shear response of a sponge-like granular assembly composed of highly compressible elastic rings. We highlight a progressive rigidity transition, switching from a yielded phase to a solid one by increasing density or decreasing shear amplitude. The rearranging yielded state consists of crystal clusters separated by melted regions; in contrast, the solid state remains amorphous and absorbs all imposed shear elastically. We rationalize this transition by uncovering an effective, attractive shear force between rings that emerges from a friction-geometry interplay. If friction is sufficiently high, the extent of the contacts between rings, captured analytically by elementary geometry, controls the rigidity transition.
Collapse
Affiliation(s)
- Samuel Poincloux
- Department of Physics, The University of Tokyo, Bunkyo-ku113-0033, Tokyo, Japan
| | - Kazumasa A. Takeuchi
- Department of Physics, The University of Tokyo, Bunkyo-ku113-0033, Tokyo, Japan
- Institute for Physics of Intelligence, The University of Tokyo, Bunkyo-ku113-0033, Tokyo, Japan
| |
Collapse
|
2
|
Interiano-Alberto KA, Morse PK, Hoy RS. Critical-like slowdown in thermal soft-sphere glasses via energy minimization. Phys Rev E 2024; 109:L062603. [PMID: 39020966 DOI: 10.1103/physreve.109.l062603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
Using hybrid molecular dynamics/SWAP Monte Carlo (MD/SMC) simulations, we show that while the terminal relaxation times τ(ϕ) for FIRE energy minimization of soft-sphere glasses can decrease by orders of magnitude as sample equilibration proceeds and the jamming density ϕ_{J} increases, they always scale as τ(ϕ)∼(ϕ_{J}-ϕ)^{-2}∼[Z_{iso}-Z_{ms}(τ)]^{-2}, where Z_{iso}=2d and Z_{ms}(τ) is the average coordination number of particles satisfying a minimal local mechanical stability criterion (Z≥d+1) at the top of the final potential-energy-landscape (PEL) sub-basin the system encounters. This scaling allows us to collapse τ datasets that look very different when plotted as a function of ϕ, and to address a closely related question: how does the character of the PEL basins that dense thermal glasses most typically occupy evolve as the glasses age at constant ϕ and T?
Collapse
|
3
|
Chen W, Sixdenier L, McMullen A, Grier DG, Brujic J. Refractive-index and density-matched emulsions with programmable DNA interactions. SOFT MATTER 2024; 20:4175-4183. [PMID: 38506651 DOI: 10.1039/d4sm00032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Emulsion droplets on the colloidal length scale are a model system of frictionless compliant spheres. Direct imaging studies of the microscopic structure and dynamics of emulsions offer valuable insights into fundamental processes, such as gelation, jamming, and self-assembly. A microscope, however, can only resolve the individual droplets in a densely packed emulsion if the droplets are closely index-matched to their fluid medium. Mitigating perturbations due to gravity additionally requires the droplets to be density-matched to the medium. Creating droplets that are simultaneously index-matched and density-matched has been a long-standing challenge for the soft-matter community. The present study introduces a method for synthesizing monodisperse micrometer-sized siloxane droplets whose density and refractive index can be precisely and independently tuned by adjusting the volume fraction of three silane precursors. A systematic optimization protocol yields fluorescently labeled ternary droplets whose densities and refractive indexes match, to the fourth decimal place, those of aqueous solutions of glycerol or dimethylsiloxane. Because all of the materials in this system are biocompatible, we functionalize the droplets with DNA strands to endow them with programmed inter-droplet interactions. Confocal microscopy then reveals both the three-dimensional structure and the network of droplet-droplet contacts in a class of self-assembled droplet gels, free from gravitational effects. This experimental toolbox creates opportunities for studying the microscopic mechanisms that govern viscoelastic properties and self-assembly in soft materials.
Collapse
Affiliation(s)
- Wenjun Chen
- Center for Soft Matter Research and Department of Physics, New York University, New York, New York, 10003, USA.
| | - Lucas Sixdenier
- Center for Soft Matter Research and Department of Physics, New York University, New York, New York, 10003, USA.
| | - Angus McMullen
- Center for Soft Matter Research and Department of Physics, New York University, New York, New York, 10003, USA.
| | - David G Grier
- Center for Soft Matter Research and Department of Physics, New York University, New York, New York, 10003, USA.
| | - Jasna Brujic
- Center for Soft Matter Research and Department of Physics, New York University, New York, New York, 10003, USA.
| |
Collapse
|
4
|
Giannini JA, Lerner E, Zamponi F, Manning ML. Scaling regimes and fluctuations of observables in computer glasses approaching the unjamming transition. J Chem Phys 2024; 160:034502. [PMID: 38226824 DOI: 10.1063/5.0176713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Under decompression, disordered solids undergo an unjamming transition where they become under-coordinated and lose their structural rigidity. The mechanical and vibrational properties of these materials have been an object of theoretical, numerical, and experimental research for decades. In the study of low-coordination solids, understanding the behavior and physical interpretation of observables that diverge near the transition is of particular importance. Several such quantities are length scales (ξ or l) that characterize the size of excitations, the decay of spatial correlations, the response to perturbations, or the effect of physical constraints in the boundary or bulk of the material. Additionally, the spatial and sample-to-sample fluctuations of macroscopic observables such as contact statistics or elastic moduli diverge approaching unjamming. Here, we discuss important connections between all of these quantities and present numerical results that characterize the scaling properties of sample-to-sample contact and shear modulus fluctuations in ensembles of low-coordination disordered sphere packings and spring networks. Overall, we highlight three distinct scaling regimes and two crossovers in the disorder quantifiers χz and χμ as functions of system size N and proximity to unjamming δz. As we discuss, χX relates to the standard deviation σX of the sample-to-sample distribution of the quantity X (e.g., excess coordination δz or shear modulus μ) for an ensemble of systems. Importantly, χμ has been linked to experimentally accessible quantities that pertain to sound attenuation and the density of vibrational states in glasses. We investigate similarities and differences in the behaviors of χz and χμ near the transition and discuss the implications of our findings on current literature, unifying findings in previous studies.
Collapse
Affiliation(s)
- Julia A Giannini
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Francesco Zamponi
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
5
|
Hara Y, Mizuno H, Ikeda A. Microrheology near jamming. SOFT MATTER 2023; 19:6046-6056. [PMID: 37525927 DOI: 10.1039/d3sm00566f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The jamming transition is a nonequilibrium critical phenomenon, which governs characteristic mechanical properties of jammed soft materials, such as pastes, emulsions, and granular matters. Both experiments and theory of jammed soft materials have revealed that the complex modulus measured by conventional macrorheology exhibits a characteristic frequency dependence. Microrheology is a new type of method to obtain the complex modulus, which transforms the microscopic motion of probes to the complex modulus through the generalized Stokes relation (GSR). Although microrheology has been applied to jammed soft materials, its theoretical understanding is limited. In particular, the validity of the GSR near the jamming transition is far from obvious since there is a diverging length scale lc, which characterizes the heterogeneous response of jammed particles. Here, we study the microrheology of jammed particles by theory and numerical simulation. First, we develop a linear response formalism to calculate the response function of the probe particle, which is transformed to the complex modulus via the GSR. Then, we apply our formalism to a numerical model of jammed particles and find that the storage and loss modulus follow characteristic scaling laws near the jamming transition. Importantly, the observed scaling law coincides with that in macrorheology, which indicates that the GSR holds even near the jamming transition. We rationalize this equivalence by asymptotic analysis of the obtained formalism and numerical analysis on the displacement field of jammed particles under a local perturbation.
Collapse
Affiliation(s)
- Yusuke Hara
- Graduate School of Arts and Science, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.
| | - Hideyuki Mizuno
- Graduate School of Arts and Science, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.
| | - Atsushi Ikeda
- Graduate School of Arts and Science, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
6
|
Yanagisawa N, Kurita R. Cross over to collective rearrangements near the dry-wet transition in two-dimensional foams. Sci Rep 2023; 13:4939. [PMID: 36973314 PMCID: PMC10042865 DOI: 10.1038/s41598-023-31577-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Liquid foams respond plastically to external perturbations over some critical magnitude. This rearrangement process is directly related to the mechanical properties of the foams, playing a significant role in determining foam lifetime, deformability, elasticity, and fluidity. In this paper, we experimentally investigate the rearrangement dynamics of foams near a dry-wet transition. When a foam transforms from a dry state to a wet state, it is found that considering collective events, separated T1 events propagate in dry foams, while T1 events occur simultaneously in wet foams. This cross over to collective rearrangements is closely related to the change in local bubble arrangements and mobility. Furthermore, it is also found that a probability of collective rearrangement events occurring follows a Poisson distribution, suggesting that there is little correlation between discrete collective rearrangement events. These results constitute progress in understanding the dynamical properties of soft jammed systems, relevant for biological and material sciences as well as food science.
Collapse
Affiliation(s)
- Naoya Yanagisawa
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan.
| | - Rei Kurita
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan.
| |
Collapse
|
7
|
Jammed microgels fabricated via various methods for biological studies. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Douglass IM, Dyre JC. Distance-as-time in physical aging. Phys Rev E 2022; 106:054615. [PMID: 36559484 DOI: 10.1103/physreve.106.054615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
Although it has been known for half a century that the physical aging of glasses in experiments is described well by a linear thermal-history convolution integral over the so-called material time, the microscopic definition and interpretation of the material time remains a mystery. We propose that the material-time increase over a given time interval reflects the distance traveled by the system's particles. Different possible distance measures are discussed, starting from the standard mean-square displacement and its inherent-state version that excludes the vibrational contribution. The viewpoint adopted, which is inspired by and closely related to pioneering works of Cugliandolo and Kurchan from the 1990s, implies a "geometric reversibility" and a "unique-triangle property" characterizing the system's path in configuration space during aging. Both of these properties are inherited from equilibrium, and they are here confirmed by computer simulations of an aging binary Lennard-Jones system. Our simulations moreover show that the slow particles control the material time. This motivates a "dynamic-rigidity-percolation" picture of physical aging. The numerical data show that the material time is dominated by the slowest particles' inherent mean-square displacement, which is conveniently quantified by the inherent harmonic mean-square displacement. This distance measure collapses data for potential-energy aging well in the sense that the normalized relaxation functions following different temperature jumps are almost the same function of the material time. Finally, the standard Tool-Narayanaswamy linear material-time convolution-integral description of physical aging is derived from the assumption that when time is replaced by distance in the above sense, an aging system is described by the same expression as that of linear-response theory.
Collapse
Affiliation(s)
- Ian M Douglass
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
9
|
Scotti A, Schulte MF, Lopez CG, Crassous JJ, Bochenek S, Richtering W. How Softness Matters in Soft Nanogels and Nanogel Assemblies. Chem Rev 2022; 122:11675-11700. [PMID: 35671377 DOI: 10.1021/acs.chemrev.2c00035] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Softness plays a key role in determining the macroscopic properties of colloidal systems, from synthetic nanogels to biological macromolecules, from viruses to star polymers. However, we are missing a way to quantify what the term "softness" means in nanoscience. Having quantitative parameters is fundamental to compare different systems and understand what the consequences of softness on the macroscopic properties are. Here, we propose different quantities that can be measured using scattering methods and microscopy experiments. On the basis of these quantities, we review the recent literature on micro- and nanogels, i.e. cross-linked polymer networks swollen in water, a widely used model system for soft colloids. Applying our criteria, we address the question what makes a nanomaterial soft? We discuss and introduce general criteria to quantify the different definitions of softness for an individual compressible colloid. This is done in terms of the energetic cost associated with the deformation and the capability of the colloid to isotropically deswell. Then, concentrated solutions of soft colloids are considered. New definitions of softness and new parameters, which depend on the particle-to-particle interactions, are introduced in terms of faceting and interpenetration. The influence of the different synthetic routes on the softness of nanogels is discussed. Concentrated solutions of nanogels are considered and we review the recent results in the literature concerning the phase behavior and flow properties of nanogels both in three and two dimensions, in the light of the different parameters we defined. The aim of this review is to look at the results on micro- and nanogels in a more quantitative way that allow us to explain the reported properties in terms of differences in colloidal softness. Furthermore, this review can give researchers dealing with soft colloids quantitative methods to define unambiguously which softness matters in their compound.
Collapse
Affiliation(s)
- Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - M Friederike Schulte
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| |
Collapse
|
10
|
Coslovich D, Ikeda A. Revisiting the single-saddle model for the β-relaxation of supercooled liquids. J Chem Phys 2022; 156:094503. [DOI: 10.1063/5.0083173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dynamics of glass-forming liquids display several outstanding features, such as two-step relaxation and dynamic heterogeneities, which are difficult to predict quantitatively from first principles. In this work, we revisit a simple theoretical model of the β-relaxation, i.e., the first step of the relaxation dynamics. The model, first introduced by Cavagna et al. [J. Phys. A: Math. Gen. 36, 10721 (2003)], describes the dynamics of the system in the neighborhood of a saddle point of the potential energy surface. We extend the model to account for density–density correlation functions and for the four-point dynamic susceptibility. We obtain analytical results for a simple schematic model, making contact with related results for p-spin models and with the predictions of inhomogeneous mode-coupling theory. Building on recent computational advances, we also explicitly compare the model predictions against overdamped Langevin dynamics simulations of a glass-forming liquid close to the mode-coupling crossover. The agreement is quantitative at the level of single-particle dynamic properties only up to the early β-regime. Due to its inherent harmonic approximation, however, the model is unable to predict the dynamics on the time scale relevant for structural relaxation. Nonetheless, our analysis suggests that the agreement with the simulations may be largely improved if the modes’ spatial localization is properly taken into account.
Collapse
Affiliation(s)
- Daniele Coslovich
- Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151 Trieste, Italy
| | - Atsushi Ikeda
- Graduate School of Arts and Science, University of Tokyo, Komaba, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
11
|
Charbonneau P, Corwin EI, Dennis RC, Díaz Hernández Rojas R, Ikeda H, Parisi G, Ricci-Tersenghi F. Finite-size effects in the microscopic critical properties of jammed configurations: A comprehensive study of the effects of different types of disorder. Phys Rev E 2021; 104:014102. [PMID: 34412313 DOI: 10.1103/physreve.104.014102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Jamming criticality defines a universality class that includes systems as diverse as glasses, colloids, foams, amorphous solids, constraint satisfaction problems, neural networks, etc. A particularly interesting feature of this class is that small interparticle forces (f) and gaps (h) are distributed according to nontrivial power laws. A recently developed mean-field (MF) theory predicts the characteristic exponents of these distributions in the limit of very high spatial dimension, d→∞ and, remarkably, their values seemingly agree with numerical estimates in physically relevant dimensions, d=2 and 3. These exponents are further connected through a pair of inequalities derived from stability conditions, and both theoretical predictions and previous numerical investigations suggest that these inequalities are saturated. Systems at the jamming point are thus only marginally stable. Despite the key physical role played by these exponents, their systematic evaluation has yet to be attempted. Here, we carefully test their value by analyzing the finite-size scaling of the distributions of f and h for various particle-based models for jamming. Both dimension and the direction of approach to the jamming point are also considered. We show that, in all models, finite-size effects are much more pronounced in the distribution of h than in that of f. We thus conclude that gaps are correlated over considerably longer scales than forces. Additionally, remarkable agreement with MF predictions is obtained in all but one model, namely near-crystalline packings. Our results thus help to better delineate the domain of the jamming universality class. We furthermore uncover a secondary linear regime in the distribution tails of both f and h. This surprisingly robust feature is understood to follow from the (near) isostaticity of our configurations.
Collapse
Affiliation(s)
- Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Eric I Corwin
- Department of Physics and Material Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - R Cameron Dennis
- Department of Physics and Material Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | | | - Harukuni Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, 153-8902, Japan
| | - Giorgio Parisi
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy
- INFN, Sezione di Roma1, and CNR-Nanotec, unità di Roma, 00185 Rome, Italy
| | - Federico Ricci-Tersenghi
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy
- INFN, Sezione di Roma1, and CNR-Nanotec, unità di Roma, 00185 Rome, Italy
| |
Collapse
|
12
|
Ikeda H, Hukushima K. Nonaffine displacements below jamming under athermal quasistatic compression. Phys Rev E 2021; 103:032902. [PMID: 33862705 DOI: 10.1103/physreve.103.032902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/23/2021] [Indexed: 11/07/2022]
Abstract
Critical properties of frictionless spherical particles below jamming are studied using extensive numerical simulations, paying particular attention to the nonaffine part of the displacements during the athermal quasistatic compression. It is shown that the squared norm of the nonaffine displacement exhibits a power-law divergence toward the jamming transition point. A possible connection between this critical exponent and that of the shear viscosity is discussed. The participation ratio of the displacements vanishes in the thermodynamic limit at the transition point, meaning that the nonaffine displacements are localized marginally with a fractal dimension. Furthermore, the distribution of the displacement is shown to have a power-law tail, the exponent of which is related to the fractal dimension.
Collapse
Affiliation(s)
- Harukuni Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo 153-8902, Japan
| | - Koji Hukushima
- Graduate School of Arts and Sciences, The University of Tokyo 153-8902, Japan.,Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
13
|
Yanagisawa N, Kurita R. Size distribution dependence of collective relaxation dynamics in a two-dimensional wet foam. Sci Rep 2021; 11:2786. [PMID: 33531566 PMCID: PMC7854744 DOI: 10.1038/s41598-021-82267-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/18/2021] [Indexed: 11/09/2022] Open
Abstract
Foams can be ubiquitously observed in nature and in industrial products. Despite the relevance of their properties to deformation, fluidity, and collapse, all of which are essential for applications, there are few experimental studies of collective relaxation dynamics in a wet foam. Here, we directly observe how the relaxation dynamics changes with increasing liquid fraction in both monodisperse and polydisperse two-dimensional foams. As we increase the liquid fraction, we quantitatively characterize the slowing-down of the relaxation, and the increase of the correlation length. We also find two different relaxation modes which depend on the size distribution of the bubbles. It suggests that the bubbles which are simply near to each other play an important role in large rearrangements, not just those in direct contact. Finally, we confirm the generality of our experimental findings by a numerical simulation for the relaxation process of wet foams.
Collapse
Affiliation(s)
- Naoya Yanagisawa
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan.
| | - Rei Kurita
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan.
| |
Collapse
|
14
|
Díaz Hernández Rojas R, Parisi G, Ricci-Tersenghi F. Inferring the particle-wise dynamics of amorphous solids from the local structure at the jamming point. SOFT MATTER 2021; 17:1056-1083. [PMID: 33326511 DOI: 10.1039/c9sm02283j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Jamming is a phenomenon shared by a wide variety of systems, such as granular materials, foams, and glasses in their high density regime. This has motivated the development of a theoretical framework capable of explaining many of their static critical properties with a unified approach. However, the dynamics occurring in the vicinity of the jamming point has received little attention and the problem of finding a connection with the local structure of the configuration remains unexplored. Here we address this issue by constructing physically well defined structural variables using the information contained in the network of contacts of jammed configurations, and then showing that such variables yield a resilient statistical description of the particle-wise dynamics near this critical point. Our results are based on extensive numerical simulations of systems of spherical particles that allow us to statistically characterize the trajectories of individual particles in terms of their first two moments. We first demonstrate that, besides displaying a broad distribution of mobilities, particles may also have preferential directions of motion. Next, we associate each of these features with a structural variable computed uniquely in terms of the contact vectors at jamming, obtaining considerably high statistical correlations. The robustness of our approach is confirmed by testing two types of dynamical protocols, namely molecular dynamics and Monte Carlo, with different types of interaction. We also provide evidence that the dynamical regime we study here is dominated by anharmonic effects and therefore it cannot be described properly in terms of vibrational modes. Finally, we show that correlations decay slowly and in an interaction-independent fashion, suggesting a universal rate of information loss.
Collapse
|
15
|
Tong H, Sengupta S, Tanaka H. Emergent solidity of amorphous materials as a consequence of mechanical self-organisation. Nat Commun 2020; 11:4863. [PMID: 32978393 PMCID: PMC7519136 DOI: 10.1038/s41467-020-18663-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
Amorphous solids have peculiar properties distinct from crystals. One of the most fundamental mysteries is the emergence of solidity in such nonequilibrium, disordered state without the protection by long-range translational order. A jammed system at zero temperature, although marginally stable, has solidity stemming from the space-spanning force network, which gives rise to the long-range stress correlation. Here, we show that such nonlocal correlation already appears at the nonequilibrium glass transition upon cooling. This is surprising since we also find that the system suffers from giant anharmonic fluctuations originated from the fractal-like potential energy landscape. We reveal that it is the percolation of the force-bearing network that allows long-range stress transmission even under such circumstance. Thus, the emergent solidity of amorphous materials is a consequence of nontrivial self-organisation of the disordered mechanical architecture. Our findings point to the significance of understanding amorphous solids and nonequilibrium glass transition from a mechanical perspective.
Collapse
Affiliation(s)
- Hua Tong
- School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China.,Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shiladitya Sengupta
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.,Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
16
|
Arceri F, Corwin EI. Vibrational Properties of Hard and Soft Spheres Are Unified at Jamming. PHYSICAL REVIEW LETTERS 2020; 124:238002. [PMID: 32603144 DOI: 10.1103/physrevlett.124.238002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
The unconventional thermal properties of jammed amorphous solids are directly related to their density of vibrational states. While the vibrational spectrum of jammed soft sphere solids has been fully described, the vibrational spectrum of hard spheres, a model glass former often related to physical colloidal glasses, is still unknown due to the difficulty of treating the nonanalytic interaction potential. We bypass this difficulty using the recently described effective interaction potential for the free energy of thermal hard spheres. By minimizing this effective free energy, we mimic the rapid compression of hard spheres and produce typical configurations of the thermal system. We measure the resulting vibrational spectrum and characterize its evolution toward the jamming point where configurations of hard and soft spheres are trivially unified. For densities approaching jamming from below, we observe low-frequency modes which agree with those found in numerical simulations of jammed soft spheres. Our measurements of the vibrational structure demonstrate that the jamming universality extends away from jamming: hard sphere thermal systems below jamming exhibit the same vibrational spectra as thermal and athermal soft sphere systems above the transition.
Collapse
Affiliation(s)
- Francesco Arceri
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | - Eric I Corwin
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
17
|
Ikeda A, Kawasaki T, Berthier L, Saitoh K, Hatano T. Universal Relaxation Dynamics of Sphere Packings below Jamming. PHYSICAL REVIEW LETTERS 2020; 124:058001. [PMID: 32083930 DOI: 10.1103/physrevlett.124.058001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/28/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
We show that non-Brownian suspensions of repulsive spheres below jamming display a slow relaxational dynamics with a characteristic timescale that diverges at jamming. This slow timescale is fully encoded in the structure of the unjammed packing and can be readily measured via the vibrational density of states. We show that the corresponding dynamic critical exponent is the same for randomly generated and sheared packings. Our results show that a wide variety of physical situations, from suspension rheology to algorithmic studies of the jamming transition are controlled by a unique diverging timescale, with a universal critical exponent.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Kuniyasu Saitoh
- Research Alliance Center for Mathematical Sciences & WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Takahiro Hatano
- Department of Earth and Space Science, Osaka University, 560-0043 Osaka, Japan
| |
Collapse
|
18
|
Scalliet C, Berthier L, Zamponi F. Nature of excitations and defects in structural glasses. Nat Commun 2019; 10:5102. [PMID: 31704936 PMCID: PMC6841723 DOI: 10.1038/s41467-019-13010-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/14/2019] [Indexed: 11/09/2022] Open
Abstract
The nature of defects in amorphous materials, analogous to vacancies and dislocations in crystals, remains elusive. Here, we explore their nature in a three-dimensional microscopic model glass-former that describes granular, colloidal, atomic and molecular glasses by changing the temperature and density. We find that all glasses evolve in a very rough energy landscape, with a hierarchy of barrier sizes corresponding to both localized and delocalized excitations. Collective excitations dominate in the jamming regime relevant for granular and colloidal glasses. By moving gradually to larger densities describing atomic and molecular glasses, the system crosses over to a regime dominated by localized defects and relatively simpler landscapes. We quantify the energy and temperature scales associated to these defects and their evolution with density. Our results pave the way to a systematic study of low-temperature physics in a broad range of physical conditions and glassy materials. The nature of the defects in amorphous materials, analogous to vacancies and dislocations in crystals, remains a matter of debate. Scalliet et al. show that localized and extended defects coexist in a wide range of conditions, yet are associated with distinct energy scales in a prototypical glass model.
Collapse
Affiliation(s)
- Camille Scalliet
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095, Montpellier, France.
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095, Montpellier, France
| | - Francesco Zamponi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005, Paris, France
| |
Collapse
|
19
|
Tong H, Hu H, Tan P, Xu N, Tanaka H. Revealing Inherent Structural Characteristics of Jammed Particulate Packings. PHYSICAL REVIEW LETTERS 2019; 122:215502. [PMID: 31283321 DOI: 10.1103/physrevlett.122.215502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 06/09/2023]
Abstract
We look for inherent structural characteristics hidden behind amorphous solid formation by using zero-temperature jammed packings of frictionless particles as models. Differently from previous geometrical approaches, we introduce a microscopic mechanical or vibrational order parameter Ψ, which characterizes the susceptibility of particle motion to infinitesimal thermal excitation. We show that (i) the distribution of Ψ has a power-law tail toward high Ψ and (ii) the spatial organization of Ψ is characterized by a nontrivial scale-free correlation. Both findings (i) and (ii) are regarded as a real-space manifestation of marginal stability due to critical self-organization of jammed packings toward mechanical equilibrium. Furthermore, we find that the power-law exponent of the Ψ distribution tail shows a critical-like scaling behavior toward the unjamming transition, which unveils an intriguing interplay between jamming criticality and marginal stability. Our microscopic order parameter provides new structural insights into the marginal stability and instability of jammed packings and may shed light on the important common structural feature of amorphous solids.
Collapse
Affiliation(s)
- Hua Tong
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Hao Hu
- School of Physics and Materials Science, Anhui University, Hefei 230601, People's Republic of China
| | - Peng Tan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Ning Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
20
|
Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II, Richtering W. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6231-6255. [PMID: 30998365 DOI: 10.1021/acs.langmuir.8b04304] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanogels and microgels are soft, deformable, and penetrable objects with an internal gel-like structure that is swollen by the dispersing solvent. Their softness and the potential to respond to external stimuli like temperature, pressure, pH, ionic strength, and different analytes make them interesting as soft model systems in fundamental research as well as for a broad range of applications, in particular in the field of biological applications. Recent tremendous developments in their synthesis open access to systems with complex architectures and compositions allowing for tailoring microgels with specific properties. At the same time state-of-the-art theoretical and simulation approaches offer deeper understanding of the behavior and structure of nano- and microgels under external influences and confinement at interfaces or at high volume fractions. Developments in the experimental analysis of nano- and microgels have become particularly important for structural investigations covering a broad range of length scales relevant to the internal structure, the overall size and shape, and interparticle interactions in concentrated samples. Here we provide an overview of the state-of-the-art, recent developments as well as emerging trends in the field of nano- and microgels. The following aspects build the focus of our discussion: tailoring (multi)functionality through synthesis; the role in biological and biomedical applications; the structure and properties as a model system, e.g., for densely packed arrangements in bulk and at interfaces; as well as the theory and computer simulation.
Collapse
Affiliation(s)
- Matthias Karg
- Physical Chemistry I , Heinrich-Heine-University Duesseldorf , 40204 Duesseldorf , Germany
| | - Andrij Pich
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Functional and Interactive Polymers, Institute for Technical and Macromolecular Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry , Bielefeld University , 33615 Bielefeld , Germany
| | - Todd Hoare
- Department of Chemical Engineering , McMaster University , Hamilton , Ontario L8S 4L8 , Canada
| | - L Andrew Lyon
- Schmid College of Science and Technology , Chapman University , Orange , California 92866 , United States
| | - J J Crassous
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | | | - Rustam A Gumerov
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
| | - Stefanie Schneider
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Igor I Potemkin
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
- National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| |
Collapse
|
21
|
Scalliet C, Berthier L, Zamponi F. Marginally stable phases in mean-field structural glasses. Phys Rev E 2019; 99:012107. [PMID: 30780252 DOI: 10.1103/physreve.99.012107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 11/07/2022]
Abstract
A novel form of amorphous matter characterized by marginal stability was recently discovered in the mean-field theory of structural glasses. Using this approach, we provide complete phase diagrams delimiting the location of the marginally stable glass phase for a large variety of pair interactions and physical conditions, extensively exploring physical regimes relevant to granular matter, foams, emulsions, hard and soft colloids, and molecular glasses. We find that all types of glasses may become marginally stable, but the extent of the marginally stable phase highly depends on the preparation protocol. Our results suggest that marginal phases should be observable for colloidal and non-Brownian particles near jamming and for poorly annealed glasses. For well-annealed glasses, two distinct marginal phases are predicted. Our study unifies previous results on marginal stability in mean-field models and will be useful to guide numerical simulations and experiments aimed at detecting marginal stability in finite-dimensional amorphous materials.
Collapse
Affiliation(s)
- Camille Scalliet
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Francesco Zamponi
- Laboratoire de Physique Théorique, Département de Physique, École Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Université Paris 06, CNRS, 75005 Paris, France
| |
Collapse
|
22
|
Lerner E. Quasilocalized states of self stress in packing-derived networks. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:93. [PMID: 30120607 DOI: 10.1140/epje/i2018-11705-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
States of self stress (SSS) are assignments of forces on the edges of a network that satisfy mechanical equilibrium in the absence of external forces. In this work we show that a particular class of quasilocalized SSS in packing-derived networks, first introduced by D.M. Sussman, C.P. Goodrich, A.J. Liu (Soft Matter 12, 3982 (2016)), are characterized by a decay length that diverges as [Formula: see text] , where [Formula: see text] is the mean connectivity of the network, and [Formula: see text] is the Maxwell threshold in two dimensions, at odds with previous claims. Our results verify the previously proposed analogy between quasilocalized SSS and the mechanical response to a local dipolar force in random networks of relaxed Hookean springs. We show that the normalization factor that distinguishes between quasilocalized SSS and the response to a local dipole constitutes a measure of the mechanical coupling of the forced spring to the elastic network in which it is embedded. We further demonstrate that the lengthscale that characterizes quasilocalized SSS does not depend on its associated degree of mechanical coupling, but instead only on the network connectivity.
Collapse
Affiliation(s)
- Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Lubchenko V, Wolynes PG. Aging, Jamming, and the Limits of Stability of Amorphous Solids. J Phys Chem B 2018; 122:3280-3295. [PMID: 29216433 DOI: 10.1021/acs.jpcb.7b09553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apart from not having crystallized, supercooled liquids can be considered as being properly equilibrated and thus can be described by a few thermodynamic control variables. In contrast, glasses and other amorphous solids can be arbitrarily far away from equilibrium and require a description of the history of the conditions under which they formed. In this paper we describe how the locality of interactions intrinsic to finite-dimensional systems affects the stability of amorphous solids far off equilibrium. Our analysis encompasses both structural glasses formed by cooling and colloidal assemblies formed by compression. A diagram outlining regions of marginal stability can be adduced which bears some resemblance to the quasi-equilibrium replica meanfield theory phase diagram of hard sphere glasses in high dimensions but is distinct from that construct in that the diagram describes not true phase transitions but kinetic transitions that depend on the preparation protocol. The diagram exhibits two distinct sectors. One sector corresponds to amorphous states with relatively open structures, the other to high density, more closely packed ones. The former transform rapidly owing to there being motions with no free energy barriers; these motions are string-like locally. In the dense region, amorphous systems age via compact activated reconfigurations. The two regimes correspond, in equilibrium, to the collisional or uniform liquid and the so-called landscape regime, respectively. These are separated by a spinodal line of dynamical crossovers. Owing to the rigidity of the surrounding matrix in the landscape, high-density part of the diagram, a sufficiently rapid pressure quench adds compressive energy which also leads to an instability toward string-like motions with near vanishing barriers. Conversely, a dilute collection of rigid particles, such as a colloidal suspension leads, when compressed, to a spatially heterogeneous structure with percolated mechanically stable regions. This jamming corresponds to the onset of activation when the spinodal line is traversed from the low density side. We argue that a stable glass made of sufficiently rigid particles can also be viewed as exhibiting sporadic and localized buckling instabilities that result in local jammed structures. The lines of instability we discuss resemble the Gardner transition of meanfield systems but, in contrast, do not result in true criticality owing to being short-circuited by activated events. The locally marginally stable modes of motion in amorphous solids correspond to secondary relaxation processes in structural glasses. Their relevance to the low temperature anomalies in glasses is also discussed.
Collapse
Affiliation(s)
- Vassiliy Lubchenko
- Departments of Chemistry and Physics , University of Houston , Houston , Texas 77204 , United States
| | - Peter G Wolynes
- Departments of Chemistry, Physics and Astronomy, and Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
24
|
Wu Q, Bertrand T, Shattuck MD, O'Hern CS. Response of jammed packings to thermal fluctuations. Phys Rev E 2017; 96:062902. [PMID: 29347455 DOI: 10.1103/physreve.96.062902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 06/07/2023]
Abstract
We focus on the response of mechanically stable (MS) packings of frictionless, bidisperse disks to thermal fluctuations, with the aim of quantifying how nonlinearities affect system properties at finite temperature. In contrast, numerous prior studies characterized the structural and mechanical properties of MS packings of frictionless spherical particles at zero temperature. Packings of disks with purely repulsive contact interactions possess two main types of nonlinearities, one from the form of the interaction potential (e.g., either linear or Hertzian spring interactions) and one from the breaking (or forming) of interparticle contacts. To identify the temperature regime at which the contact-breaking nonlinearities begin to contribute, we first calculated the minimum temperatures T_{cb} required to break a single contact in the MS packing for both single- and multiple-eigenmode perturbations of the T=0 MS packing. We find that the temperature required to break a single contact for equal velocity-amplitude perturbations involving all eigenmodes approaches the minimum value obtained for a perturbation in the direction connecting disk pairs with the smallest overlap. We then studied deviations in the constant volume specific heat C[over ¯]_{V} and deviations of the average disk positions Δr from their T=0 values in the temperature regime T_{C[over ¯]_{V}}<T<T_{r}, where T_{r} is the temperature beyond which the system samples the basin of a new MS packing. We find that the deviation in the specific heat per particle ΔC[over ¯]_{V}^{0}/C[over ¯]_{V}^{0} relative to the zero-temperature value C[over ¯]_{V}^{0} can grow rapidly above T_{cb}; however, the deviation ΔC[over ¯]_{V}^{0}/C[over ¯]_{V}^{0} decreases as N^{-1} with increasing system size. To characterize the relative strength of contact-breaking versus form nonlinearities, we measured the ratio of the average position deviations Δr^{ss}/Δr^{ds} for single- and double-sided linear and nonlinear spring interactions. We find that Δr^{ss}/Δr^{ds}>100 for linear spring interactions is independent of system size. This result emphasizes that contact-breaking nonlinearities are dominant over form nonlinearities in the low-temperature range T_{cb}<T<T_{r} for model jammed systems.
Collapse
Affiliation(s)
- Qikai Wu
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Thibault Bertrand
- Laboratoire Jean Perrin UMR 8237 CNRS/UPMC, Université Pierre et Marie Curie, 75255 Paris Cedex, France
| | - Mark D Shattuck
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics and Benjamin Levich Institute, City College of the City University of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
25
|
Braibanti M, Kim HS, Şenbil N, Pagenkopp MJ, Mason TG, Scheffold F. The liquid-glass-jamming transition in disordered ionic nanoemulsions. Sci Rep 2017; 7:13879. [PMID: 29118340 PMCID: PMC5678350 DOI: 10.1038/s41598-017-13584-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022] Open
Abstract
In quenched disordered out-of-equilibrium many-body colloidal systems, there are important distinctions between the glass transition, which is related to the onset of nonergodicity and loss of low-frequency relaxations caused by crowding, and the jamming transition, which is related to the dramatic increase in elasticity of the system caused by the deformation of constituent objects. For softer repulsive interaction potentials, these two transitions become increasingly smeared together, so measuring a clear distinction between where the glass ends and where jamming begins becomes very difficult or even impossible. Here, we investigate droplet dynamics in concentrated silicone oil-in-water nanoemulsions using light scattering. For zero or low NaCl electrolyte concentrations, interfacial repulsions are soft and longer in range, this transition sets in at lower concentrations, and the glass and the jamming regimes are smeared. However, at higher electrolyte concentrations the interactions are stiffer, and the characteristics of the glass-jamming transition resemble more closely the situation of disordered elastic spheres having sharp interfaces, so the glass and jamming regimes can be distinguished more clearly.
Collapse
Affiliation(s)
- Marco Braibanti
- Department of Physics, University of Fribourg, 1700, Fribourg, Switzerland
| | - Ha Seong Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, USA
| | - Nesrin Şenbil
- Department of Physics, University of Fribourg, 1700, Fribourg, Switzerland
| | - Matthew J Pagenkopp
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, USA
| | - Thomas G Mason
- Department of Chemistry and Biochemistry, and Department of Physics and Astronomy, University of California, Los Angeles, California, 90095, USA
| | - Frank Scheffold
- Department of Physics, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
26
|
Ikeda A, Berthier L, Parisi G. Large-scale structure of randomly jammed spheres. Phys Rev E 2017; 95:052125. [PMID: 28618611 DOI: 10.1103/physreve.95.052125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 06/07/2023]
Abstract
We numerically analyze the density field of three-dimensional randomly jammed packings of monodisperse soft frictionless spherical particles, paying special attention to fluctuations occurring at large length scales. We study in detail the two-point static structure factor at low wave vectors in Fourier space. We also analyze the nature of the density field in real space by studying the large-distance behavior of the two-point pair correlation function, of density fluctuations in subsystems of increasing sizes, and of the direct correlation function. We show that such real space analysis can be greatly improved by introducing a coarse-grained density field to disentangle genuine large-scale correlations from purely local effects. Our results confirm that both Fourier and real space signatures of vanishing density fluctuations at large scale are absent, indicating that randomly jammed packings are not hyperuniform. In addition, we establish that the pair correlation function displays a surprisingly complex structure at large distances, which is however not compatible with the long-range negative correlation of hyperuniform systems but fully compatible with an analytic form for the structure factor. This implies that the direct correlation function is short ranged, as we also demonstrate directly. Our results reveal that density fluctuations in jammed packings do not follow the behavior expected for random hyperuniform materials, but display instead a more complex behavior.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221, Centre National de la Recherche Scientifique and Université de Montpellier, 34095 Montpellier, France
| | - Giorgio Parisi
- Dipartimento di Fisica, Università Degli Studi di Roma La Sapienza, Nanotec, Consiglio Nazionale delle Ricerche, UOS Rome, Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Piazzale A. Moro 2, 00185 Rome, Italy
| |
Collapse
|
27
|
Liétor-Santos JJ, Burton JC. Casimir effect between pinned particles in two-dimensional jammed systems. SOFT MATTER 2017; 13:1142-1155. [PMID: 28097282 DOI: 10.1039/c6sm02072k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Casimir effect arises when long-ranged fluctuations are geometrically confined between two surfaces, leading to a macroscopic force. Traditionally, these forces have been observed in quantum systems and near critical points in classical systems. Here we show the existence of Casimir-like forces between two pinned particles immersed in two-dimensional systems near the jamming transition. We observe two components to the total force: a short-ranged, depletion force and a long-ranged, repulsive Casimir-like force. The Casimir-like force dominates as the jamming transition is approached, and when the pinned particles are much larger than the ambient jammed particles. We show that this repulsive force arises due to a clustering of particles with strong contact forces around the perimeter of the pinned particles. As the separation between the pinned particles decreases, a region of high-pressure develops between them, leading to a net repulsive force.
Collapse
Affiliation(s)
| | - Justin C Burton
- Department of Physics, Emory University, Atlanta, GA 30033, USA.
| |
Collapse
|
28
|
Tjhung E, Kawasaki T. Excitation of vibrational soft modes in disordered systems using active oscillation. SOFT MATTER 2016; 13:111-118. [PMID: 27221647 DOI: 10.1039/c6sm00788k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We propose a new method to characterize the spatial distribution of particles' vibrations in solids with much lower computational costs compared to the usual normal mode analysis. We excite the specific vibrational mode in a two dimensional athermal jammed system by giving a small amplitude of active oscillation to each particle's size with an identical driving frequency. The response is then obtained as the real time displacements of the particles. We show remarkable correlations between the real time displacements and the eigen vectors obtained from conventional normal mode analysis. More importantly, from these real time displacements, we can measure the participation ratio and spatial polarization of particles' vibrations. From these measurements, we find three distinct frequency regimes which characterize the spatial distribution and correlation of particles' vibrations in jammed amorphous solids. Furthermore, we can possibly apply this method to a much larger system to examine the low frequency behaviour of amorphous solids with a much higher resolution of the frequency space.
Collapse
Affiliation(s)
- Elsen Tjhung
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier, Montpellier 34095, France
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
29
|
van Deen MS, Tighe BP, van Hecke M. Contact changes of sheared systems: Scaling, correlations, and mechanisms. Phys Rev E 2016; 94:062905. [PMID: 28085433 DOI: 10.1103/physreve.94.062905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 06/06/2023]
Abstract
We probe the onset and effect of contact changes in two-dimensional soft harmonic particle packings which are sheared quasistatically under controlled strain. First, we show that, in the majority of cases, the first contact changes correspond to the creation or breaking of contacts on a single particle, with contact breaking overwhelmingly likely for low pressures and/or small systems, and contact making and breaking equally likely for large pressures and in the thermodynamic limit. The statistics of the corresponding strains are near-Poissonian, in particular for large-enough systems. The mean characteristic strains exhibit scaling with the number of particles N and pressure P and reveal the existence of finite-size effects akin to those seen for linear response quantities [C. P. Goodrich et al., Phys. Rev. Lett. 109, 095704 (2012)PRLTAO0031-900710.1103/PhysRevLett.109.095704; C. P. Goodrich et al., Phys. Rev. E 90, 022138 (2014)].PLEEE81539-375510.1103/PhysRevE.90.022138 Second, we show that linear response accurately predicts the strains of the first contact changes, which allows us to accurately study the scaling of the characteristic strains of making and breaking contacts separately. Both of these show finite-size scaling, and we formulate scaling arguments that are consistent with the observed behavior. Third, we probe the effect of the first contact change on the shear modulus G and show in detail how the variation of G remains smooth and bounded in the large-system-size limit: Even though contact changes occur then at vanishingly small strains, their cumulative effect, even at a fixed value of the strain, are limited, so, effectively, linear response remains well defined. Fourth, we explore multiple contact changes under shear and find strong and surprising correlations between alternating making and breaking events. Fifth, we show that by making a link with extremal statistics, our data are consistent with a very slow crossover to self-averaging with system size, so the thermodynamic limit is reached much more slowly than expected based on finite-size scaling of elastic quantities or contact breaking strains.
Collapse
Affiliation(s)
- Merlijn S van Deen
- Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Brian P Tighe
- Process & Energy Laboratory, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Martin van Hecke
- Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
30
|
Seguin A, Dauchot O. Experimental Evidence of the Gardner Phase in a Granular Glass. PHYSICAL REVIEW LETTERS 2016; 117:228001. [PMID: 27925738 DOI: 10.1103/physrevlett.117.228001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 06/06/2023]
Abstract
Analyzing the dynamics of a vibrated bidimensional packing of bidisperse granular disks below jamming, we provide evidence of a Gardner phase deep into the glass phase. To do so, we perform several compression cycles within a given realization of the same glass and show that the particles select different average vibrational positions at each cycle, while the neighborhood structure remains unchanged. The separation between the cages obtained for different compression cycles plateaus with an increasing packing fraction, while the mean square displacement steadily decreases. This phenomenology is strikingly similar to that reported in recent numerical observations when entering the Gardner phase, for a mean-field model of glass as well as for hard spheres in finite dimension. We also characterize the distribution of the cage order parameters. Here we note several differences from the numerical results, which could be attributed to activated processes and cage heterogeneities.
Collapse
Affiliation(s)
- A Seguin
- Laboratoire FAST, Université Paris-Sud, CNRS, Université Paris-Saclay, F-91405, Orsay, France
- SPEC, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - O Dauchot
- EC2M, UMR Gulliver 7083 CNRS, ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
31
|
Abstract
We propose a Widom-like scaling ansatz for the critical jamming transition. Our ansatz for the elastic energy shows that the scaling of the energy, compressive strain, shear strain, system size, pressure, shear stress, bulk modulus, and shear modulus are all related to each other via scaling relations, with only three independent scaling exponents. We extract the values of these exponents from already known numerical or theoretical results, and we numerically verify the resulting predictions of the scaling theory for the energy and residual shear stress. We also derive a scaling relation between pressure and residual shear stress that yields insight into why the shear and bulk moduli scale differently. Our theory shows that the jamming transition exhibits an emergent scale invariance, setting the stage for the potential development of a renormalization group theory for jamming.
Collapse
Affiliation(s)
- Carl P Goodrich
- Department of Physics, University of Pennsylvania, Philadelphia, PA 19104; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
| | - Andrea J Liu
- Department of Physics, University of Pennsylvania, Philadelphia, PA 19104
| | - James P Sethna
- Department of Physics, Cornell University, Ithaca, NY 14850
| |
Collapse
|
32
|
Mizuno H, Saitoh K, Silbert LE. Elastic moduli and vibrational modes in jammed particulate packings. Phys Rev E 2016; 93:062905. [PMID: 27415345 DOI: 10.1103/physreve.93.062905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Indexed: 06/06/2023]
Abstract
When we elastically impose a homogeneous, affine deformation on amorphous solids, they also undergo an inhomogeneous, nonaffine deformation, which can have a crucial impact on the overall elastic response. To correctly understand the elastic modulus M, it is therefore necessary to take into account not only the affine modulus M_{A}, but also the nonaffine modulus M_{N} that arises from the nonaffine deformation. In the present work, we study the bulk (M=K) and shear (M=G) moduli in static jammed particulate packings over a range of packing fractions φ. The affine M_{A} is determined essentially by the static structural arrangement of particles, whereas the nonaffine M_{N} is related to the vibrational eigenmodes. We elucidate the contribution of each vibrational mode to the nonaffine M_{N} through a modal decomposition of the displacement and force fields. In the vicinity of the (un)jamming transition φ_{c}, the vibrational density of states g(ω) shows a plateau in the intermediate-frequency regime above a characteristic frequency ω^{*}. We illustrate that this unusual feature apparent in g(ω) is reflected in the behavior of M_{N}: As φ→φ_{c}, where ω^{*}→0, those modes for ω<ω^{*} contribute less and less, while contributions from those for ω>ω^{*} approach a constant value which results in M_{N} to approach a critical value M_{Nc}, as M_{N}-M_{Nc}∼ω^{*}. At φ_{c} itself, the bulk modulus attains a finite value K_{c}=K_{Ac}-K_{Nc}>0, such that K_{Nc} has a value that remains below K_{Ac}. In contrast, for the critical shear modulus G_{c}, G_{Nc} and G_{Ac} approach the same value so that the total value becomes exactly zero, G_{c}=G_{Ac}-G_{Nc}=0. We explore what features of the configurational and vibrational properties cause such a distinction between K and G, allowing us to validate analytical expressions for their critical values.
Collapse
Affiliation(s)
- Hideyuki Mizuno
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Kuniyasu Saitoh
- Faculty of Engineering Technology, MESA+, University of Twente, 7500 AE Enschede, The Netherlands
| | - Leonardo E Silbert
- Department of Physics, Southern Illinois University Carbondale, Carbondale, Illinois 62901, USA
| |
Collapse
|
33
|
Mizuno H, Silbert LE, Sperl M, Mossa S, Barrat JL. Cutoff nonlinearities in the low-temperature vibrations of glasses and crystals. Phys Rev E 2016; 93:043314. [PMID: 27176435 DOI: 10.1103/physreve.93.043314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Indexed: 06/05/2023]
Abstract
We present a computer simulation study of glassy and crystalline states using the standard Lennard-Jones interaction potential that is truncated at a finite cutoff distance, as is typical of many computer simulations. We demonstrate that the discontinuity at the cutoff distance in the first derivative of the potential (corresponding to the interparticle force) leads to the appearance of cutoff nonlinearities. These cutoff nonlinearities persist into the very-low-temperature regime thereby affecting low-temperature thermal vibrations, which leads to a breakdown of the harmonic approximation for many eigenmodes, particularly for low-frequency vibrational modes. Furthermore, while expansion nonlinearities which are due to higher order terms in the Taylor expansion of the interaction potential are usually ignored at low temperatures and show up as the temperature increases, cutoff nonlinearities can become most significant at the lowest temperatures. Anharmonic effects readily show up in the elastic moduli which not only depend on the eigenfrequencies, but are crucially sensitive to the eigenvectors of the normal modes. In contrast, those observables that rely mainly on static structural information or just the eigenfrequencies, such as the vibrational density of states, total potential energy, and specific heat, show negligible dependence on the presence of the cutoff. Similar aspects of nonlinear behavior have recently been reported in model granular materials, where the constituent particles interact through finite-range, purely repulsive potentials. These nonlinearities have been ascribed to the nature of the sudden cutoff at contact in the force law. As a consequence, we demonstrate that cutoff nonlinearities emerge as a general feature of ordered and disordered solid state systems interacting through truncated potentials.
Collapse
Affiliation(s)
- Hideyuki Mizuno
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Leonardo E Silbert
- Department of Physics, Southern Illinois University Carbondale, Carbondale, Illinois 62901, USA
| | - Matthias Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Stefano Mossa
- Université Grenoble Alpes, INAC-SPRAM, F-38000 Grenoble, France
- CNRS, INAC-SPRAM, F-38000 Grenoble, France
- CEA, INAC-SPRAM, F-38000 Grenoble, France
| | - Jean-Louis Barrat
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
- Institut Laue-Langevin-6 rue Jules Horowitz, BP 156, 38042 Grenoble, France
| |
Collapse
|
34
|
Robinson JF, Godfrey MJ, Moore MA. Glasslike behavior of a hard-disk fluid confined to a narrow channel. Phys Rev E 2016; 93:032101. [PMID: 27078286 DOI: 10.1103/physreve.93.032101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Indexed: 06/05/2023]
Abstract
Disks moving in a narrow channel have many features in common with the glassy behavior of hard spheres in three dimensions. In this paper we study the caging behavior of the disks that sets in at characteristic packing fraction ϕ(d). Four-point overlap functions similar to those studied when investigating dynamical heterogeneities have been determined from event-driven molecular dynamics simulations and the time-dependent dynamical length scale has been extracted from them. The dynamical length scale increases with time and, on the equilibration time scale, it is proportional to the static length scale associated with the zigzag ordering in the system, which grows rapidly above ϕ(d). The structural features responsible for the onset of caging and the glassy behavior are easy to identify as they show up in the structure factor, which we have determined exactly from the transfer-matrix approach.
Collapse
Affiliation(s)
- J F Robinson
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - M J Godfrey
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - M A Moore
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
35
|
Mizuno H, Silbert LE, Sperl M. Spatial Distributions of Local Elastic Moduli Near the Jamming Transition. PHYSICAL REVIEW LETTERS 2016; 116:068302. [PMID: 26919018 DOI: 10.1103/physrevlett.116.068302] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Indexed: 06/05/2023]
Abstract
Recent progress on studies of the nanoscale mechanical responses in disordered systems has highlighted a strong degree of heterogeneity in the elastic moduli. In this contribution, using computer simulations, we study the elastic heterogeneities in athermal amorphous solids--composed of isotropic static sphere packings--near the jamming transition. We employ techniques based on linear response methods that are amenable to experimentation. We find that the local elastic moduli are randomly distributed in space and are described by Gaussian probability distributions, thereby lacking any significant spatial correlations, that persist all the way down to the transition point. However, the shear modulus fluctuations grow as the jamming threshold is approached, which is characterized by a new power-law scaling. Through this diverging behavior we are able to identify a characteristic length scale, associated with shear modulus heterogeneities, that distinguishes between bulk and local elastic responses.
Collapse
Affiliation(s)
- Hideyuki Mizuno
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Leonardo E Silbert
- Department of Physics, Southern Illinois University Carbondale, Carbondale, Illinois 62901, USA
| | - Matthias Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| |
Collapse
|
36
|
Zhang L, Mao X. Finite-temperature mechanical instability in disordered lattices. Phys Rev E 2016; 93:022110. [PMID: 26986291 DOI: 10.1103/physreve.93.022110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 06/05/2023]
Abstract
Mechanical instability takes different forms in various ordered and disordered systems and little is known about how thermal fluctuations affect different classes of mechanical instabilities. We develop an analytic theory involving renormalization of rigidity and coherent potential approximation that can be used to understand finite-temperature mechanical stabilities in various disordered systems. We use this theory to study two disordered lattices: a randomly diluted triangular lattice and a randomly braced square lattice. These two lattices belong to two different universality classes as they approach mechanical instability at T=0. We show that thermal fluctuations stabilize both lattices. In particular, the triangular lattice displays a critical regime in which the shear modulus scales as G∼T(1/2), whereas the square lattice shows G∼T(2/3). We discuss generic scaling laws for finite-T mechanical instabilities and relate them to experimental systems.
Collapse
Affiliation(s)
- Leyou Zhang
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
37
|
Abstract
We report an analytical study of the vibrational spectrum of the simplest model of jamming, the soft perceptron. We identify two distinct classes of soft modes. The first kind of modes are related to isostaticity and appear only in the close vicinity of the jamming transition. The second kind of modes instead are present everywhere in the glass phase and are related to the hierarchical structure of the potential energy landscape. Our results highlight the universality of the spectrum of normal modes in disordered systems, and open the way toward a detailed analytical understanding of the vibrational spectrum of low-temperature glasses.
Collapse
|
38
|
Ikeda A, Berthier L. Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012309. [PMID: 26274164 DOI: 10.1103/physreve.92.012309] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Jamming is a geometric phase transition occurring in dense particle systems in the absence of temperature. We use computer simulations to analyze the effect of thermal fluctuations on several signatures of the transition. We show that scaling laws for bulk and shear moduli only become relevant when thermal fluctuations are extremely small, and propose their relative ratio as a quantitative signature of jamming criticality. Despite the nonequilibrium nature of the transition, we find that thermally induced fluctuations and mechanical responses obey equilibrium fluctuation-dissipation relations near jamming, provided the appropriate fluctuating component of the particle displacements is analyzed. This shows that mechanical moduli can be directly measured from particle positions in mechanically unperturbed packings, and suggests that the definition of a "nonequilibrium index" is unnecessary for amorphous materials. We find that fluctuations of particle displacements are spatially correlated, and define a transverse and a longitudinal correlation length scale which both diverge as the jamming transition is approached. We analyze the frozen component of density fluctuations and find that it displays signatures of nearly hyperuniform behavior at large length scales. This demonstrates that hyperuniformity in jammed packings is unrelated to a vanishing compressibility and explains why it appears remarkably robust against temperature and density variations. Differently from jamming criticality, obstacles preventing the observation of hyperuniformity in colloidal systems do not originate from thermal fluctuations.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, Montpellier, France
| |
Collapse
|
39
|
Choi SB, Lee JS. Jamming and unjamming transition of oil-in-water emulsions under continuous temperature change. BIOMICROFLUIDICS 2015; 9:034107. [PMID: 26064194 PMCID: PMC4457658 DOI: 10.1063/1.4922278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
To analyze the jamming and unjamming transition of oil-in-water emulsions under continuous temperature change, we simulated an emulsion system whose critical volume fraction was 0.3, which was validated with experimental results under oscillatory shear stress. In addition, we calculated the elastic modulus using the phase lag between strain and stress. Through heating and cooling, the emulsion experienced unjamming and jamming. A phenomenon-which is when the elastic modulus does not reach the expected value at the isothermal system-occurred when the emulsion system was cooled. We determined that this phenomenon was caused by the frequency being faster than the relaxation of the deformed droplets. We justified the relation between the frequency and relaxation by simulating the frequency dependency of the difference between the elastic modulus when cooled and the expected value at the same temperature.
Collapse
Affiliation(s)
- Se Bin Choi
- Department of Mechanical Engineering, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Joon Sang Lee
- Department of Mechanical Engineering, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| |
Collapse
|
40
|
DeGiuli E, Lerner E, Wyart M. Theory of the jamming transition at finite temperature. J Chem Phys 2015; 142:164503. [DOI: 10.1063/1.4918737] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- E. DeGiuli
- Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York 10003, USA
| | - E. Lerner
- Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York 10003, USA
- Institute for Theoretical Physics, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M. Wyart
- Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York 10003, USA
| |
Collapse
|
41
|
Wang X, Zheng W, Wang L, Xu N. Disordered solids without well-defined transverse phonons: the nature of hard-sphere glasses. PHYSICAL REVIEW LETTERS 2015; 114:035502. [PMID: 25659006 DOI: 10.1103/physrevlett.114.035502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 06/04/2023]
Abstract
We probe the Ioffe-Regel limits of glasses with repulsions near the zero-temperature jamming transition by calculating the dynamical structure factors. The Ioffe-Regel limit (frequency) is reached when the phonon wavelength is comparable to the mean free path, beyond which phonons are no longer well defined. At zero temperature, the transverse Ioffe-Regel frequency vanishes at the jamming transition with a diverging length, but the longitudinal one does not, which excludes the existence of a diverging length associated with the longitudinal excitations. At low temperatures, the transverse and longitudinal Ioffe-Regel frequencies approach zero at the jamminglike transition and glass transition, respectively. As a consequence, glasses between the glass transition and the jamminglike transition, which are hard-sphere glasses in the low temperature limit, can only carry well-defined longitudinal phonons and have an opposite pressure dependence of the ratio of the shear modulus to the bulk modulus from glasses beyond the jamminglike transition.
Collapse
Affiliation(s)
- Xipeng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wen Zheng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Lijin Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ning Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
42
|
Mao X, Souslov A, Mendoza CI, Lubensky TC. Mechanical instability at finite temperature. Nat Commun 2015; 6:5968. [DOI: 10.1038/ncomms6968] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/26/2014] [Indexed: 11/09/2022] Open
|
43
|
Force distribution affects vibrational properties in hard-sphere glasses. Proc Natl Acad Sci U S A 2014; 111:17054-9. [PMID: 25406326 DOI: 10.1073/pnas.1415298111] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We theoretically and numerically study the elastic properties of hard-sphere glasses and provide a real-space description of their mechanical stability. In contrast to repulsive particles at zero temperature, we argue that the presence of certain pairs of particles interacting with a small force f soften elastic properties. This softening affects the exponents characterizing elasticity at high pressure, leading to experimentally testable predictions. Denoting P(f) ~ f(θ(e)), the force distribution of such pairs and ϕ(c) the packing fraction at which pressure diverges, we predict that (i) the density of states has a low-frequency peak at a scale ω*, rising up to it as D(ω) ~ ω(2+a), and decaying above ω* as D(ω) ~ ω(-a) where a = (1 - θ(e))/(3 + θ(e)) and ω is the frequency, (ii) shear modulus and mean-squared displacement are inversely proportional with ⟨δR²⟩ ~ 1/μ ~ (ϕ(c) - ϕ)(κ), where κ = 2 - 2/(3 + θ(e)), and (iii) continuum elasticity breaks down on a scale ℓ(c) ~ 1/√(δz) ~ (ϕ(c) - ϕ)(-b), where b = (1 + θ(e))/(6 + 2θ(e)) and δz = z - 2d, where z is the coordination and d the spatial dimension. We numerically test (i) and provide data supporting that θ(e) ≈ 0.41 in our bidisperse system, independently of system preparation in two and three dimensions, leading to κ ≈ 1.41, a ≈ 0.17, and b ≈ 0.21. Our results for the mean-square displacement are consistent with a recent exact replica computation for d = ∞, whereas some observations differ, as rationalized by the present approach.
Collapse
|
44
|
Coulais C, Seguin A, Dauchot O. Shear modulus and dilatancy softening in granular packings above jamming. PHYSICAL REVIEW LETTERS 2014; 113:198001. [PMID: 25415925 DOI: 10.1103/physrevlett.113.198001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Indexed: 06/04/2023]
Abstract
We investigate experimentally the mechanical response to shear of a monolayer of bidisperse frictional grains across the jamming transition. We inflate an intruder inside the packing and use photoelasticity and tracking techniques to measure the induced shear strain and stresses at the grain scale. We quantify experimentally the constitutive relations for strain amplitudes as low as 10(-3) and for a range of packing fractions within 2% variation around the jamming transition. At the transition strong nonlinear effects set in: both the shear modulus and the dilatancy shear soften at small strain until a critical strain is reached where effective linearity is recovered. The scaling of the critical strain and the associated critical stresses on the distance to jamming are extracted. We check that the constitutive laws, together with mechanical equilibrium, correctly predict to the observed stress and strain profiles. These profiles exhibit a spatial crossover between an effective linear regime close to the inflater and the truly nonlinear regime away from it. The crossover length diverges at the jamming transition.
Collapse
Affiliation(s)
- C Coulais
- SPHYNX/SPEC, CEA-Saclay, URA 2464 CNRS, 91191 Gif-sur-Yvette, France and Université Paris-Sud, CNRS, Lab FAST, Bat 502, Campus Université, Orsay F-91405, France and Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, P.O. box 9504, 2300 RA Leiden, Netherlands
| | - A Seguin
- SPHYNX/SPEC, CEA-Saclay, URA 2464 CNRS, 91191 Gif-sur-Yvette, France and Université Paris-Sud, CNRS, Lab FAST, Bat 502, Campus Université, Orsay F-91405, France
| | - O Dauchot
- EC2M, ESPCI-ParisTech, UMR Gulliver 7083 CNRS, 75005 Paris, France
| |
Collapse
|
45
|
Charbonneau P, Jin Y, Parisi G, Zamponi F. Hopping and the Stokes-Einstein relation breakdown in simple glass formers. Proc Natl Acad Sci U S A 2014; 111:15025-30. [PMID: 25288722 PMCID: PMC4210276 DOI: 10.1073/pnas.1417182111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the most actively debated issues in the study of the glass transition is whether a mean-field description is a reasonable starting point for understanding experimental glass formers. Although the mean-field theory of the glass transition--like that of other statistical systems--is exact when the spatial dimension d → ∞, the evolution of systems properties with d may not be smooth. Finite-dimensional effects could dramatically change what happens in physical dimensions,d = 2, 3. For standard phase transitions finite-dimensional effects are typically captured by renormalization group methods, but for glasses the corrections are much more subtle and only partially understood. Here, we investigate hopping between localized cages formed by neighboring particles in a model that allows to cleanly isolate that effect. By bringing together results from replica theory, cavity reconstruction, void percolation, and molecular dynamics, we obtain insights into how hopping induces a breakdown of the Stokes-Einstein relation and modifies the mean-field scenario in experimental systems. Although hopping is found to supersede the dynamical glass transition, it nonetheless leaves a sizable part of the critical regime untouched. By providing a constructive framework for identifying and quantifying the role of hopping, we thus take an important step toward describing dynamic facilitation in the framework of the mean-field theory of glasses.
Collapse
Affiliation(s)
| | - Yuliang Jin
- Departments of Chemistry and Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Rome, Italy;
| | - Giorgio Parisi
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Rome, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, I-00185 Rome, Italy; and
| | - Francesco Zamponi
- Laboratoire de Physique Théorique, Ecole Normale Supérieure, UMR 8549 CNRS, 75005 Paris, France
| |
Collapse
|
46
|
Sanlı C, Saitoh K, Luding S, van der Meer D. Collective motion of macroscopic spheres floating on capillary ripples: dynamic heterogeneity and dynamic criticality. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:033018. [PMID: 25314540 DOI: 10.1103/physreve.90.033018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Indexed: 06/04/2023]
Abstract
When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal subdiffusion for the caging time scales followed by a diffusive regime at later times. We apply the methods developed to study dynamic heterogeneity and show that the typical time and length scales of the fluctuations due to rearrangements of observed particle groups significantly increase when the system approaches its largest experimentally accessible packing concentration. To connect the system to the dynamic criticality literature, we fit power laws to our results. The resultant critical exponents are consistent with those found in densely packed suspensions of colloids.
Collapse
Affiliation(s)
- Ceyda Sanlı
- CompleXity and Networks, naXys, University of Namur, 5000 Namur, Belgium and Physics of Fluids, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Kuniyasu Saitoh
- Multi Scale Mechanics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Stefan Luding
- Multi Scale Mechanics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Devaraj van der Meer
- Physics of Fluids, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
47
|
van Deen MS, Simon J, Zeravcic Z, Dagois-Bohy S, Tighe BP, van Hecke M. Contact changes near jamming. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:020202. [PMID: 25215671 DOI: 10.1103/physreve.90.020202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Indexed: 06/03/2023]
Abstract
We probe the onset and effect of contact changes in soft harmonic particle packings which are sheared quasistatically. We find that the first contact changes are the creation or breaking of contacts on a single particle. We characterize the critical strain, statistics of breaking versus making a contact, and ratio of shear modulus before and after such events, and explain their finite size scaling relations. For large systems at finite pressure, the critical strain vanishes but the ratio of shear modulus before and after a contact change approaches one: linear response remains relevant in large systems. For finite systems close to jamming the critical strain also vanishes, but here linear response already breaks down after a single contact change.
Collapse
Affiliation(s)
- Merlijn S van Deen
- Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands
| | - Johannes Simon
- Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands
| | - Zorana Zeravcic
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Simon Dagois-Bohy
- Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands
| | - Brian P Tighe
- Process & Energy Laboratory, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Martin van Hecke
- Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
48
|
Yoshino H, Zamponi F. Shear modulus of glasses: results from the full replica-symmetry-breaking solution. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022302. [PMID: 25215733 DOI: 10.1103/physreve.90.022302] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 06/03/2023]
Abstract
We compute the shear modulus of amorphous hard and soft spheres, using the exact solution in infinite spatial dimensions that has been developed recently. We characterize the behavior of this observable in the whole phase diagram, and in particular around the glass and jamming transitions. Our results are consistent with other theoretical approaches, which are unified within this general picture, and they are also consistent with numerical and experimental results. Furthermore, we discuss some properties of the out-of-equilibrium dynamics after a deep quench close to the jamming transition, and we show that a combined measure of the shear modulus and of the mean square displacement allows one to probe experimentally the complex structure of phase space predicted by the full replica-symmetry-breaking solution.
Collapse
Affiliation(s)
- Hajime Yoshino
- Department of Earth and Space Science, Faculty of Science, Osaka University, Toyonaka 560-0043, Japan and Cybermedia Center, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Francesco Zamponi
- LPT, École Normale Supérieure, UMR 8549 CNRS, 24 Rue Lhomond, 75005 Paris, France
| |
Collapse
|
49
|
Goodrich CP, Liu AJ, Nagel SR. Contact nonlinearities and linear response in jammed particulate packings. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022201. [PMID: 25215727 DOI: 10.1103/physreve.90.022201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Indexed: 06/03/2023]
Abstract
Packings of frictionless athermal particles that interact only when they overlap experience a jamming transition as a function of packing density. Such packings provide the foundation for the theory of jamming. This theory rests on the observation that, despite the multitude of disordered configurations, the mechanical response to linear order depends only on the distance to the transition. We investigate the validity and utility of such measurements that invoke the harmonic approximation and show that, despite particles coming in and out of contact, there is a well-defined linear regime in the thermodynamic limit.
Collapse
Affiliation(s)
- Carl P Goodrich
- Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrea J Liu
- Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sidney R Nagel
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
50
|
Lerner E, DeGiuli E, Düring G, Wyart M. Breakdown of continuum elasticity in amorphous solids. SOFT MATTER 2014; 10:5085-5092. [PMID: 24905568 DOI: 10.1039/c4sm00311j] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We show numerically that the response of simple amorphous solids (elastic networks and particle packings) to a local force dipole is characterized by a lengthscale lc that diverges as unjamming is approached as lc ∼ (z - 2d)(-1/2), where z ≥ 2d is the mean coordination, and d is the spatial dimension, at odds with previous numerical claims. We also show how the magnitude of the lengthscale lc is amplified by the presence of internal stresses in the disordered solid. Our data suggests a divergence of lc ∼ (pc - p)(-1/4) with proximity to a critical internal stress pc at which soft elastic modes become unstable.
Collapse
Affiliation(s)
- Edan Lerner
- New York University, Center for Soft Matter Research, 4 Washington Place, New York, NY 10003, USA.
| | | | | | | |
Collapse
|