1
|
Douglas JF, Yuan QL, Zhang J, Zhang H, Xu WS. A dynamical system approach to relaxation in glass-forming liquids. SOFT MATTER 2024; 20:9140-9160. [PMID: 39512171 DOI: 10.1039/d4sm00976b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The "classical" thermodynamic and statistical mechanical theories of Gibbs and Boltzmann are both predicated on axiomatic assumptions whose applicability is hard to ascertain. Theoretical objections and an increasing number of observed deviations from these theories have led to sustained efforts to develop an improved mathematical and physical foundation for them, and the search for appropriate extensions that are generally applicable to condensed materials at low temperatures (T) and high material densities where the assumptions of these theories start to become particularly questionable. These theoretical efforts have largely focused on minimal models of condensed material systems, such as the Fermi-Ulam-Pasta-Tsingou model, and other simplified models of condensed materials that are amenable to numerical and analytic treatments and that can serve to illuminate essential features of relaxation processes in condensed materials under conditions approaching integrable dynamics where clear departures from classical thermodynamics and dynamics can be generally expected. These studies indicate an apparently general multi-step relaxation process, corresponding to an initial "fast" relaxation process (termed the fast β-relaxation in the context of cooled liquids), followed by a longer "equipartition time", namely, the α-relaxation time τα in the context of cooled liquids. This relaxation timescale can be enormously longer than the fast β-relaxation time τβ so that τα is the primary parameter governing the rate at which the material comes into equilibrium, and thus is a natural focus of theoretical attention. Since the dynamics of these simplified dynamical systems, originally intended as simplified models of real crystalline materials exhibiting anharmonic interactions, greatly resemble the observed relaxation dynamics of both heated crystals and cooled liquids, we adapt this dynamical system approach to the practical matter of estimating relaxation times in both cooled liquids and crystals at elevated temperatures, which we identify as weakly non-integrable dynamical systems.
Collapse
Affiliation(s)
- Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | - Qi-Lu Yuan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiarui Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
2
|
Yuan QL, Xu X, Douglas JF, Xu WS. Influence of Density and Pressure on Glass Formation in the Kob-Andersen Model. J Phys Chem B 2024; 128:9889-9904. [PMID: 39352857 DOI: 10.1021/acs.jpcb.4c04721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
We systematically study glass formation in the well-known Kob-Andersen model over a wide range of densities and pressures as a basis for judging the "universality" of glass formation through a comparison to a recent systematic study of model polymeric glass-forming liquids. Our purpose is to establish general characteristics of glass formation, to identify new relations, and to discern which properties of glass-forming liquids are material-specific and which are "universal." To this end, we analyze a number of characteristic properties of glass formation, such as the structural relaxation time, self-diffusion coefficient, viscosity, characteristic temperatures, and fragility. We also consider a suite of properties presumably related to dynamic heterogeneity in an attempt to better understand its relation to structural relaxation. We demonstrate that the glassy dynamics in the Kob-Andersen model exhibit many of the essential trends observed in polymeric glass-forming liquids, pointing to a remarkable "universality" of many aspects of glass formation.
Collapse
Affiliation(s)
- Qi-Lu Yuan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
3
|
Zhang H, Wang X, Zhang J, Yu HB, Douglas JF. Approach to hyperuniformity in a metallic glass-forming material exhibiting a fragile to strong glass transition. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:50. [PMID: 37380868 DOI: 10.1140/epje/s10189-023-00308-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
We investigate a metallic glass-forming (GF) material (Al90Sm10) exhibiting a fragile-strong (FS) glass-formation by molecular dynamics simulation to better understand this highly distinctive pattern of glass-formation in which many of the usual phenomenological relations describing relaxation times and diffusion of ordinary GF liquids no longer apply, and where instead genuine thermodynamic features are observed in response functions and little thermodynamic signature is exhibited at the glass transition temperature, Tg. Given the many unexpected similarities between the thermodynamics and dynamics of this metallic GF material with water, we first focus on the anomalous static scattering in this liquid, following recent studies on water, silicon and other FS GF liquids. We quantify the "hyperuniformity index" H of our liquid, which provides a quantitative measure of molecular "jamming". To gain insight into the T-dependence and magnitude of H, we also estimate another more familiar measure of particle localization, the Debye-Waller parameter 〈u2〉 describing the mean-square particle displacement on a timescale on the order of the fast relaxation time, and we also calculate H and 〈u2〉 for heated crystalline Cu. This comparative analysis between H and 〈u2〉 for crystalline and metallic glass materials allows us to understand the critical value of H on the order of 10-3 as being analogous to the Lindemann criterion for both the melting of crystals and the "softening" of glasses. We further interpret the emergence of FS GF and liquid-liquid phase separation in this class of liquids to arise from a cooperative self-assembly process in the GF liquid.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| | - Xinyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jiarui Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Hai-Bin Yu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Jack F Douglas
- Material Measurement Laboratory, Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
4
|
Wang H, Torquato S. Equilibrium states corresponding to targeted hyperuniform nonequilibrium pair statistics. SOFT MATTER 2023; 19:550-564. [PMID: 36546870 DOI: 10.1039/d2sm01294d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The Zhang-Torquato conjecture [G. Zhang and S. Torquato, Phys. Rev. E, 2020, 101, 032124.] states that any realizable pair correlation function g2(r) or structure factor S(k) of a translationally invariant nonequilibrium system can be attained by an equilibrium ensemble involving only (up to) effective two-body interactions. To further test and study this conjecture, we consider two singular nonequilibrium models of recent interest that also have the exotic hyperuniformity property: a 2D "perfect glass" and a 3D critical absorbing-state model. We find that each nonequilibrium target can be achieved accurately by equilibrium states with effective one- and two-body potentials, lending further support to the conjecture. To characterize the structural degeneracy of such a nonequilibrium-equilibrium correspondence, we compute higher-order statistics for both models, as well as those for a hyperuniform 3D uniformly randomized lattice (URL), whose higher-order statistics can be very precisely ascertained. Interestingly, we find that the differences in the higher-order statistics between nonequilibrium and equilibrium systems with matching pair statistics, as measured by the "hole" probability distribution, provide measures of the degree to which a system is out of equilibrium. We show that all three systems studied possess the bounded-hole property and that holes near the maximum hole size in the URL are much rarer than those in the underlying simple cubic lattice. Remarkably, upon quenching, the effective potentials for all three systems possess local energy minima (i.e., inherent structures) with stronger forms of hyperuniformity compared to their target counterparts. Our methods are expected to facilitate the self-assembly of tunable hyperuniform soft-matter systems.
Collapse
Affiliation(s)
- Haina Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, USA
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Princeton Institute of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey, 08544, USA
- School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA.
| |
Collapse
|
5
|
Torquato S, Wang H. Precise determination of pair interactions from pair statistics of many-body systems in and out of equilibrium. Phys Rev E 2022; 106:044122. [PMID: 36397532 DOI: 10.1103/physreve.106.044122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The determination of the pair potential v(r) that accurately yields an equilibrium state at positive temperature T with a prescribed pair correlation function g_{2}(r) or corresponding structure factor S(k) in d-dimensional Euclidean space R^{d} is an outstanding inverse statistical mechanics problem with far-reaching implications. Recently, Zhang and Torquato [Phys. Rev. E 101, 032124 (2020)2470-004510.1103/PhysRevE.101.032124] conjectured that any realizable g_{2}(r) or S(k) corresponding to a translationally invariant nonequilibrium system can be attained by a classical equilibrium ensemble involving only (up to) effective pair interactions. Testing this conjecture for nonequilibrium systems as well as for nontrivial equilibrium states requires improved inverse methodologies. We have devised an optimization algorithm to precisely determine effective pair potentials that correspond to pair statistics of general translationally invariant disordered many-body equilibrium or nonequilibrium systems at positive temperatures. This methodology utilizes a parameterized family of pointwise basis functions for the potential function whose initial form is informed by small-, intermediate- and large-distance behaviors dictated by statistical-mechanical theory. Subsequently, a nonlinear optimization technique is utilized to minimize an objective function that incorporates both the target pair correlation function g_{2}(r) and structure factor S(k) so that the small intermediate- and large-distance correlations are very accurately captured. To illustrate the versatility and power of our methodology, we accurately determine the effective pair interactions of the following four diverse target systems: (1) Lennard-Jones system in the vicinity of its critical point, (2) liquid under the Dzugutov potential, (3) nonequilibrium random sequential addition packing, and (4) a nonequilibrium hyperuniform "cloaked" uniformly randomized lattice. We found that the optimized pair potentials generate corresponding pair statistics that accurately match their corresponding targets with total L_{2}-norm errors that are an order of magnitude smaller than that of previous methods. The results of our investigation lend further support to the Zhang-Torquato conjecture. Furthermore, our algorithm will enable one to probe systems with identical pair statistics but different higher-body statistics, which will shed light on the well-known degeneracy problem of statistical mechanics.
Collapse
Affiliation(s)
- Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
- School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540, USA
| | - Haina Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
6
|
Manifestations of metastable criticality in the long-range structure of model water glasses. Nat Commun 2021; 12:3398. [PMID: 34099681 PMCID: PMC8185069 DOI: 10.1038/s41467-021-23639-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Much attention has been devoted to water’s metastable phase behavior, including polyamorphism (multiple amorphous solid phases), and the hypothesized liquid-liquid transition and associated critical point. However, the possible relationship between these phenomena remains incompletely understood. Using molecular dynamics simulations of the realistic TIP4P/2005 model, we found a striking signature of the liquid-liquid critical point in the structure of water glasses, manifested as a pronounced increase in long-range density fluctuations at pressures proximate to the critical pressure. By contrast, these signatures were absent in glasses of two model systems that lack a critical point. We also characterized the departure from equilibrium upon vitrification via the non-equilibrium index; water-like systems exhibited a strong pressure dependence in this metric, whereas simple liquids did not. These results reflect a surprising relationship between the metastable equilibrium phenomenon of liquid-liquid criticality and the non-equilibrium structure of glassy water, with implications for our understanding of water phase behavior and glass physics. Our calculations suggest a possible experimental route to probing the existence of the liquid-liquid transition in water and other fluids. The subtle connections between water’s supercooled liquid and glassy states are difficult to characterize. Gartner et al. suggest with MD simulations that the long-range structure of glassy water may reflect signatures of water’s debated second critical point in the supercooled liquid.
Collapse
|
7
|
Torquato S. Structural characterization of many-particle systems on approach to hyperuniform states. Phys Rev E 2021; 103:052126. [PMID: 34134204 DOI: 10.1103/physreve.103.052126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/04/2021] [Indexed: 11/07/2022]
Abstract
The study of hyperuniform states of matter is an emerging multidisciplinary field, impinging on topics in the physical sciences, mathematics, and biology. The focus of this work is the exploration of quantitative descriptors that herald when a many-particle system in d-dimensional Euclidean space R^{d} approaches a hyperuniform state as a function of the relevant control parameter. We establish quantitative criteria to ascertain the extent of hyperuniform and nonhyperuniform distance-scaling regimes as well as the crossover point between them in terms of the "volume" coefficient A and "surface-area" coefficient B associated with the local number variance σ^{2}(R) for a spherical window of radius R. The larger the ratio B/A, the larger the hyperuniform scaling regime, which becomes of infinite extent in the limit B/A→∞. To complement the known direct-space representation of the coefficient B in terms of the total correlation function h(r), we derive its corresponding Fourier representation in terms of the structure factor S(k), which is especially useful when scattering information is available experimentally or theoretically. We also demonstrate that the free-volume theory of the pressure of equilibrium packings of identical hard spheres that approach a strictly jammed state either along the stable crystal or metastable disordered branch dictates that such end states be exactly hyperuniform. Using the ratio B/A, as well as other diagnostic measures of hyperuniformity, including the hyperuniformity index H and the direct-correlation function length scale ξ_{c}, we study three different exactly solvable models as a function of the relevant control parameter, either density or temperature, with end states that are perfectly hyperuniform. Specifically, we analyze equilibrium systems of hard rods and "sticky" hard-sphere systems in arbitrary space dimension d as a function of density. We also examine low-temperature excited states of many-particle systems interacting with "stealthy" long-ranged pair interactions as the temperature tends to zero, where the ground states are disordered, hyperuniform, and infinitely degenerate. We demonstrate that our various diagnostic hyperuniformity measures are positively correlated with one another. The same diagnostic measures can be used to detect the degree to which imperfections in nearly hyperuniform systems cause deviations from perfect hyperuniformity. Moreover, the capacity to identify hyperuniform scaling regimes should be particularly useful in analyzing experimentally or computationally generated samples that are necessarily of finite size.
Collapse
Affiliation(s)
- Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
8
|
Xu WS, Douglas JF, Xu X. Role of Cohesive Energy in Glass Formation of Polymers with and without Bending Constraints. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
9
|
Chremos A. Design of nearly perfect hyperuniform polymeric materials. J Chem Phys 2020; 153:054902. [PMID: 32770903 PMCID: PMC7530914 DOI: 10.1063/5.0017861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 01/18/2023] Open
Abstract
Disordered hyperuniform materials are exotic amorphous systems that simultaneously exhibit anomalous suppression of long-range density fluctuations, comparable in amplitude to that of crystals and quasi-crystalline materials, while lacking the translational order characteristic of simple liquids. We establish a framework to quantitatively predict the emergence of hyperuniformity in polymeric materials by considering the distribution of localized polymer subregions, instead of considering the whole material. We demonstrate that this highly tunable approach results in arbitrarily small long-range density fluctuations in the liquid state. Our simulations also indicate that long-ranged density fluctuation of the whole polymeric material is remarkably insensitive to molecular topology (linear chain, unknotted ring, star, and bottlebrush) and depends on temperature in an apparently near universal fashion. Our findings open the way for the creation of nearly perfect hyperuniform polymeric materials.
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
10
|
Xu WS, Douglas JF, Xu X. Molecular Dynamics Study of Glass Formation in Polymer Melts with Varying Chain Stiffness. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00731] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
11
|
Torquato S. Perspective: Basic understanding of condensed phases of matter via packing models. J Chem Phys 2018; 149:020901. [DOI: 10.1063/1.5036657] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- S. Torquato
- Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
12
|
Xu WS, Douglas JF, Freed KF. Influence of Pressure on Glass Formation in a Simulated Polymer Melt. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jack F. Douglas
- Materials
Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
13
|
Zhang G, Stillinger FH, Torquato S. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero. Sci Rep 2016; 6:36963. [PMID: 27892452 PMCID: PMC5125002 DOI: 10.1038/srep36963] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/24/2016] [Indexed: 01/06/2023] Open
Abstract
Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a "perfect glass". A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite.
Collapse
Affiliation(s)
- G. Zhang
- Department of Chemistry, Princeton University, Princeton, 08540, USA
| | - F. H. Stillinger
- Department of Chemistry, Princeton University, Princeton, 08540, USA
| | - S. Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, 08540, USA
| |
Collapse
|
14
|
Torquato S. Disordered hyperuniform heterogeneous materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:414012. [PMID: 27545746 DOI: 10.1088/0953-8984/28/41/414012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Disordered hyperuniform many-body systems are distinguishable states of matter that lie between a crystal and liquid: they are like perfect crystals in the way they suppress large-scale density fluctuations and yet are like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These systems play a vital role in a number of fundamental and applied problems: glass formation, jamming, rigidity, photonic and electronic band structure, localization of waves and excitations, self-organization, fluid dynamics, quantum systems, and pure mathematics. Much of what we know theoretically about disordered hyperuniform states of matter involves many-particle systems. In this paper, we derive new rigorous criteria that disordered hyperuniform two-phase heterogeneous materials must obey and explore their consequences. Two-phase heterogeneous media are ubiquitous; examples include composites and porous media, biological media, foams, polymer blends, granular media, cellular solids, and colloids. We begin by obtaining some results that apply to hyperuniform two-phase media in which one phase is a sphere packing in d-dimensional Euclidean space [Formula: see text]. Among other results, we rigorously establish the requirements for packings of spheres of different sizes to be 'multihyperuniform'. We then consider hyperuniformity for general two-phase media in [Formula: see text]. Here we apply realizability conditions for an autocovariance function and its associated spectral density of a two-phase medium, and then incorporate hyperuniformity as a constraint in order to derive new conditions. We show that some functional forms can immediately be eliminated from consideration and identify other forms that are allowable. Specific examples and counterexamples are described. Contact is made with well-known microstructural models (e.g. overlapping spheres and checkerboards) as well as irregular phase-separation and Turing-type patterns. We also ascertain a family of autocovariance functions (or spectral densities) that are realizable by disordered hyperuniform two-phase media in any space dimension, and present select explicit constructions of realizations. These studies provide insight into the nature of disordered hyperuniformity in the context of heterogeneous materials and have implications for the design of such novel amorphous materials.
Collapse
Affiliation(s)
- Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA. Department of Physics, Princeton University, Princeton, NJ 08544, USA. Princeton Institute for the Science and Technology of Materials, Princeton, NJ 08544, USA. Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
15
|
Xu WS, Douglas JF, Freed KF. Influence of Cohesive Energy on the Thermodynamic Properties of a Model Glass-Forming Polymer Melt. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01503] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jack F. Douglas
- Materials
Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
16
|
Atkinson S, Stillinger FH, Torquato S. Static structural signatures of nearly jammed disordered and ordered hard-sphere packings: Direct correlation function. Phys Rev E 2016; 94:032902. [PMID: 27739707 DOI: 10.1103/physreve.94.032902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 06/06/2023]
Abstract
The nonequilibrium process by which hard-particle systems may be compressed into disordered, jammed states has received much attention because of its wide utility in describing a broad class of amorphous materials. While dynamical signatures are known to precede jamming, the task of identifying static structural signatures indicating the onset of jamming have proven more elusive. The observation that compressing hard-particle packings towards jamming is accompanied by an anomalous suppression of density fluctuations (termed "hyperuniformity") has paved the way for the analysis of jamming as an "inverted critical point" in which the direct correlation function c(r), rather than the total correlation function h(r), diverges. We expand on the notion that c(r) provides both universal and protocol-specific information as packings approach jamming. By considering the degree and position of singularities (discontinuities in the nth derivative) as well as how they are changed by the convolutions found in the Ornstein-Zernike equation, we establish quantitative statements about the structure of c(r) with regards to singularities it inherits from h(r). These relations provide a concrete means of identifying features that must be expressed in c(r) if one hopes to reproduce various details in the pair correlation function accurately and provide stringent tests on the associated numerics. We also analyze the evolution of systems of three-dimensional monodisperse hard spheres of diameter D as they approach ordered and disordered jammed configurations. For the latter, we use the Lubachevsky-Stillinger (LS) molecular dynamics and Torquato-Jiao (TJ) sequential linear programming algorithms, which both generate disordered packings, but can show perceptible structural differences. We identify a short-ranged scaling c(r)∝-1/r as r→0 that accompanies the formation of the delta function at c(D) that indicates the formation of contacts in all cases, and show that this scaling behavior is, in this case, a consequence of the growing long rangedness in c(r), e.g., c∝-1/r^{2} as r→∞ for disordered packings. At densities in the vicinity of the freezing density, we find striking qualitative differences in the structure factor S(k) as well as c(r) between TJ- and LS-generated configurations, including the early formation of a delta function at c(D) in the TJ algorithm's packings, indicating the early formation of clusters of particles in near contact. Both algorithms yield structure factors that tend towards zero in the low-wave-number limit as jamming is approached. Correspondingly, we observe the expected power-law decay in c(r) for large r, in agreement with previous theoretical work. Our work advances the notion that static signatures are exhibited by hard-particle packings as they approach jamming and underscores the utility of the direct correlation function as a sensitive means of monitoring for the appearance of an incipient rigid network.
Collapse
Affiliation(s)
- Steven Atkinson
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Frank H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Program of Applied and Computational Mathematics, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
17
|
Abstract
Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystal and liquid: They are like perfect crystals in the way they suppress large-scale density fluctuations and yet are like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These exotic states of matter play a vital role in a number of problems across the physical, mathematical as well as biological sciences and, because they are endowed with novel physical properties, have technological importance. Given the fundamental as well as practical importance of disordered hyperuniform systems elucidated thus far, it is natural to explore the generalizations of the hyperuniformity notion and its consequences. In this paper, we substantially broaden the hyperuniformity concept along four different directions. This includes generalizations to treat fluctuations in the interfacial area (one of the Minkowski functionals) in heterogeneous media and surface-area driven evolving microstructures, random scalar fields, divergence-free random vector fields, and statistically anisotropic many-particle systems and two-phase media. In all cases, the relevant mathematical underpinnings are formulated and illustrative calculations are provided. Interfacial-area fluctuations play a major role in characterizing the microstructure of two-phase systems (e.g., fluid-saturated porous media), physical properties that intimately depend on the geometry of the interface, and evolving two-phase microstructures that depend on interfacial energies (e.g., spinodal decomposition). In the instances of random vector fields and statistically anisotropic structures, we show that the standard definition of hyperuniformity must be generalized such that it accounts for the dependence of the relevant spectral functions on the direction in which the origin in Fourier space is approached (nonanalyticities at the origin). Using this analysis, we place some well-known energy spectra from the theory of isotropic turbulence in the context of this generalization of hyperuniformity. Among other results, we show that there exist many-particle ground-state configurations in which directional hyperuniformity imparts exotic anisotropic physical properties (e.g., elastic, optical, and acoustic characteristics) to these states of matter. Such tunability could have technological relevance for manipulating light and sound waves in ways heretofore not thought possible. We show that disordered many-particle systems that respond to external fields (e.g., magnetic and electric fields) are a natural class of materials to look for directional hyperuniformity. The generalizations of hyperuniformity introduced here provide theoreticians and experimentalists new avenues to understand a very broad range of phenomena across a variety of fields through the hyperuniformity "lens."
Collapse
Affiliation(s)
- Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Program of Applied and Computational Mathematics, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
18
|
Ikeda A, Berthier L. Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012309. [PMID: 26274164 DOI: 10.1103/physreve.92.012309] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Jamming is a geometric phase transition occurring in dense particle systems in the absence of temperature. We use computer simulations to analyze the effect of thermal fluctuations on several signatures of the transition. We show that scaling laws for bulk and shear moduli only become relevant when thermal fluctuations are extremely small, and propose their relative ratio as a quantitative signature of jamming criticality. Despite the nonequilibrium nature of the transition, we find that thermally induced fluctuations and mechanical responses obey equilibrium fluctuation-dissipation relations near jamming, provided the appropriate fluctuating component of the particle displacements is analyzed. This shows that mechanical moduli can be directly measured from particle positions in mechanically unperturbed packings, and suggests that the definition of a "nonequilibrium index" is unnecessary for amorphous materials. We find that fluctuations of particle displacements are spatially correlated, and define a transverse and a longitudinal correlation length scale which both diverge as the jamming transition is approached. We analyze the frozen component of density fluctuations and find that it displays signatures of nearly hyperuniform behavior at large length scales. This demonstrates that hyperuniformity in jammed packings is unrelated to a vanishing compressibility and explains why it appears remarkably robust against temperature and density variations. Differently from jamming criticality, obstacles preventing the observation of hyperuniformity in colloidal systems do not originate from thermal fluctuations.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Klatt MA, Torquato S. Characterization of maximally random jammed sphere packings: Voronoi correlation functions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052120. [PMID: 25493753 DOI: 10.1103/physreve.90.052120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 06/04/2023]
Abstract
We characterize the structure of maximally random jammed (MRJ) sphere packings by computing the Minkowski functionals (volume, surface area, and integrated mean curvature) of their associated Voronoi cells. The probability distribution functions of these functionals of Voronoi cells in MRJ sphere packings are qualitatively similar to those of an equilibrium hard-sphere liquid and partly even to the uncorrelated Poisson point process, implying that such local statistics are relatively structurally insensitive. This is not surprising because the Minkowski functionals of a single Voronoi cell incorporate only local information and are insensitive to global structural information. To improve upon this, we introduce descriptors that incorporate nonlocal information via the correlation functions of the Minkowski functionals of two cells at a given distance as well as certain cell-cell probability density functions. We evaluate these higher-order functions for our MRJ packings as well as equilibrium hard spheres and the Poisson point process. It is shown that these Minkowski correlation and density functions contain visibly more information than the corresponding standard pair-correlation functions. We find strong anticorrelations in the Voronoi volumes for the hyperuniform MRJ packings, consistent with previous findings for other pair correlations [A. Donev et al., Phys. Rev. Lett. 95, 090604 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.090604], indicating that large-scale volume fluctuations are suppressed by accompanying large Voronoi cells with small cells, and vice versa. In contrast to the aforementioned local Voronoi statistics, the correlation functions of the Voronoi cells qualitatively distinguish the structure of MRJ sphere packings (prototypical glasses) from that of not only the Poisson point process but also the correlated equilibrium hard-sphere liquids. Moreover, while we did not find any perfect icosahedra (the locally densest possible structure in which a central sphere contacts 12 neighbors) in the MRJ packings, a preliminary Voronoi topology analysis indicates the presence of strongly distorted icosahedra.
Collapse
Affiliation(s)
- Michael A Klatt
- Department of Chemistry, Department of Physics, Princeton University, Princeton, New Jersey 08544, USA and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institut für Theoretische Physik, Staudtstraße 7, 91058 Erlangen, Germany
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
20
|
Desmond KW, Weeks ER. Influence of particle size distribution on random close packing of spheres. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022204. [PMID: 25215730 DOI: 10.1103/physreve.90.022204] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Indexed: 05/26/2023]
Abstract
The densest amorphous packing of rigid particles is known as random close packing. It has long been appreciated that higher densities are achieved by using collections of particles with a variety of sizes. For spheres, the variety of sizes is often quantified by the polydispersity of the particle size distribution: the standard deviation of the radius divided by the mean radius. Several prior studies quantified the increase of the packing density as a function of polydispersity. A particle size distribution is also characterized by its skewness, kurtosis, and higher moments, but the influence of these parameters has not been carefully quantified before. In this work, we numerically generate many sphere packings with different particle radii distributions, varying polydispersity and skewness independently of one another. We find that the packing density can increase significantly with increasing skewness and in some cases skewness can have a larger effect than polydispersity. However, the packing fraction is relatively insensitive to the higher moment value of the kurtosis. We present a simple empirical formula for the value of the random close packing density as a function of polydispersity and skewness.
Collapse
Affiliation(s)
- Kenneth W Desmond
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
21
|
|
22
|
Shiba H, Kawasaki T. Spatiotemporal heterogeneity of local free volumes in highly supercooled liquid. J Chem Phys 2013; 139:184502. [PMID: 24320279 DOI: 10.1063/1.4829442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We discuss the spatiotemporal behavior of local density and its relation to dynamical heterogeneity in a highly supercooled liquid by using molecular dynamics simulations of a binary mixture with different particle sizes in two dimensions. To trace voids heterogeneously existing with lower local densities, which move along with the structural relaxation, we employ the minimum local density for each particle in a time window whose width is set along with the structural relaxation time. Particles subject to free volumes correspond well to the configuration rearranging region of dynamical heterogeneity. While the correlation length for dynamical heterogeneity grows with temperature decrease, no growth in the correlation length of heterogeneity in the minimum local density distribution takes place. A comparison of these results with those of normal mode analysis reveals that superpositions of lower-frequency soft modes extending over the free volumes exhibit spatial correlation with the broken bonds. This observation suggests a possibility that long-ranged vibration modes facilitate the interactions between fragile regions represented by free volumes, to induce dynamical correlations at a large scale.
Collapse
Affiliation(s)
- Hayato Shiba
- Institute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan
| | | |
Collapse
|
23
|
Jadrich R, Schweizer KS. Equilibrium theory of the hard sphere fluid and glasses in the metastable regime up to jamming. II. Structure and application to hopping dynamics. J Chem Phys 2013; 139:054502. [DOI: 10.1063/1.4816276] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
24
|
Hopkins AB, Stillinger FH, Torquato S. Disordered strictly jammed binary sphere packings attain an anomalously large range of densities. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022205. [PMID: 24032826 DOI: 10.1103/physreve.88.022205] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Indexed: 06/02/2023]
Abstract
Previous attempts to simulate disordered binary sphere packings have been limited in producing mechanically stable, isostatic packings across a broad spectrum of packing fractions. Here we report that disordered strictly jammed binary packings (packings that remain mechanically stable under general shear deformations and compressions) can be produced with an anomalously large range of average packing fractions 0.634≤φ≤0.829 for small to large sphere radius ratios α restricted to α≥0.100. Surprisingly, this range of average packing fractions is obtained for packings containing a subset of spheres (called the backbone) that are exactly strictly jammed, exactly isostatic, and also generated from random initial conditions. Additionally, the average packing fractions of these packings at certain α and small sphere relative number concentrations x approach those of the corresponding densest known ordered packings. These findings suggest for entropic reasons that these high-density disordered packings should be good glass formers and that they may be easy to prepare experimentally. We also identify an unusual feature of the packing fraction of jammed backbones (packings with rattlers excluded). The backbone packing fraction is about 0.624 over the majority of the α-x plane, even when large numbers of small spheres are present in the backbone. Over the (relatively small) area of the α-x plane where the backbone is not roughly constant, we find that backbone packing fractions range from about 0.606 to 0.829, with the volume of rattler spheres comprising between 1.6% and 26.9% of total sphere volume. To generate isostatic strictly jammed packings, we use an implementation of the Torquato-Jiao sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010)], which is an efficient producer of inherent structures (mechanically stable configurations at the local maxima in the density landscape). The identification and explicit construction of binary packings with such high packing fractions could have important practical implications for granular composites where density is critical both to material properties and fabrication cost, including for solid propellants, concrete, and ceramics. The densities and structures of jammed binary packings at various α and x are also relevant to the formation of a glass phase in multicomponent metallic systems.
Collapse
Affiliation(s)
- Adam B Hopkins
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
25
|
Affiliation(s)
- H. Henning Winter
- Department
of Chemical Engineering and Department of
Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|