1
|
Li R, Wang J, Singh A, Li B, Song Z, Zhou C, Li L. Automatic Feature Selection for Atom-Centered Neural Network Potentials Using a Gradient Boosting Decision Algorithm. J Chem Theory Comput 2024; 20:10564-10573. [PMID: 39558630 DOI: 10.1021/acs.jctc.4c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Atom-centered neural network (ANN) potentials have shown high accuracy and computational efficiency in modeling atomic systems. A crucial step in developing reliable ANN potentials is the proper selection of atom-centered symmetry functions (ACSFs), also known as atomic features, to describe atomic environments. Inappropriate selection of ACSFs can lead to poor-quality ANN potentials. Here, we propose a gradient boosting decision tree (GBDT)-based framework for the automatic selection of optimal ACSFs. This framework takes uniformly distributed sets of ACSFs as input and evaluates their relative importance. The ACSFs with high average importance scores are selected and used to train an ANN potential. We applied this method to the Ge system, resulting in an ANN potential with root-mean-square errors (RMSE) of 10.2 meV/atom for energy and 84.8 meV/Å for force predictions, utilizing only 18 ACSFs to achieve a balance between accuracy and computational efficiency. The framework is validated using the grid searching method, demonstrating that ACSFs selected with our framework are in the optimal region. Furthermore, we also compared our method with commonly used feature selection algorithms. The results show that our algorithm outperforms the others in terms of effectiveness and accuracy. This study highlights the significance of the ACSF parameter effect on the ANN performance and presents a promising method for automatic ACSF selection, facilitating the development of machine learning potentials.
Collapse
Affiliation(s)
- Renzhe Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Jiaqi Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Akksay Singh
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Bai Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Zichen Song
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, People's Republic of China
| | - Chuan Zhou
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Lei Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
2
|
Xiong L, Zhang L, Zhao B, Jiang B. Six-dimensional quantum dynamics of an Eley-Rideal reaction between gaseous and adsorbed hydrogen atoms on Cu(111). Faraday Discuss 2024; 251:457-470. [PMID: 38757528 DOI: 10.1039/d3fd00163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In the form of direct abstraction of a surface adsorbate by a gaseous projectile, the Eley-Rideal (ER) reaction at the gas-surface interface manifests interesting dynamics. Unfortunately, high-dimensional quantum dynamical (QD) studies for ER reactions remain very challenging, which demands a large configuration space and the coordinate transformation of wavefunctions. Here, we report the first six-dimensional (6D) fully coupled quantum scattering method for studying the ER reaction between gas phase H(D) atoms and adsorbed D(H) atoms on a rigid Cu(111) surface. Reaction probabilities and product rovibrational state distributions obtained by this 6D model are found to be quite different from those obtained by reduced-dimensional QD models, demonstrating the high-dimensional nature of the ER reaction. Using two distinct potential energy surfaces (PESs), we further discuss the influence of the PES on the calculated product vibrational and rotational state distributions, in comparison with experimental results. The lateral corrugation and the exothermicity of the PES are found to play a critical role in controlling the energy disposal in the ER reaction.
Collapse
Affiliation(s)
- Longlong Xiong
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Liang Zhang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Bin Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Bin Jiang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
3
|
Jiang B, Guo H. Dynamics in reactions on metal surfaces: A theoretical perspective. J Chem Phys 2019; 150:180901. [PMID: 31091904 DOI: 10.1063/1.5096869] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent advances in theoretical characterization of reaction dynamics on metal surfaces are reviewed. It is shown that the widely available density functional theory of metals and their interactions with molecules have enabled first principles theoretical models for treating surface reaction dynamics. The new theoretical tools include methods to construct high-dimensional adiabatic potential energy surfaces, to characterize nonadiabatic processes within the electronic friction models, and to describe dynamics both quantum mechanically and classically. Three prototypical surface reactions, namely, dissociative chemisorption, Eley-Rideal reactions, and recombinative desorption, are surveyed with a focus on some representative examples. While principles governing gas phase reaction dynamics may still be applicable, the presence of the surface introduces a higher level of complexity due to strong interaction between the molecular species and metal substrate. Furthermore, most of these reactive processes are impacted by energy exchange with surface phonons and/or electron-hole pair excitations. These theoretical studies help to interpret and rationalize experimental observations and, in some cases, guide experimental explorations. Knowledge acquired in these fundamental studies is expected to impact many practical problems in a wide range of interfacial processes.
Collapse
Affiliation(s)
- Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
4
|
Zhou L, Zhou X, Alducin M, Zhang L, Jiang B, Guo H. Ab initio molecular dynamics study of the Eley-Rideal reaction of H + Cl–Au(111) → HCl + Au(111): Impact of energy dissipation to surface phonons and electron-hole pairs. J Chem Phys 2018; 148:014702. [DOI: 10.1063/1.5016054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Linsen Zhou
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Xueyao Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Maite Alducin
- Centro de Física de Materiales Centro Mixto, CSIC-UPV/EHU, P. Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Liang Zhang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
5
|
Kroes GJ, Díaz C. Quantum and classical dynamics of reactive scattering of H2 from metal surfaces. Chem Soc Rev 2016; 45:3658-700. [DOI: 10.1039/c5cs00336a] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
State-of-the-art theoretical models allow nowadays an accurate description of H2/metal surface systems and phenomena relative to heterogeneous catalysis. Here we review the most relevant ones investigated during the last 10 years.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry
- Gorlaeus Laboratories
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - Cristina Díaz
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
6
|
Pétuya R, Larrégaray P, Crespos C, Busnengo HF, Martínez AE. Dynamics of H2 Eley-Rideal abstraction from W(110): Sensitivity to the representation of the molecule-surface potential. J Chem Phys 2014; 141:024701. [DOI: 10.1063/1.4885139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- R. Pétuya
- Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex, France
- CNRS, ISM, UMR5255, F-33400 Talence, France
| | - P. Larrégaray
- Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex, France
- CNRS, ISM, UMR5255, F-33400 Talence, France
| | - C. Crespos
- Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex, France
- CNRS, ISM, UMR5255, F-33400 Talence, France
| | - H. F. Busnengo
- Instituto de Física Rosario (IFIR) CONICET-UNR. Ocampo y Esmeralda (2000) Rosario, Argentina
| | - A. E. Martínez
- Instituto de Física Rosario (IFIR) CONICET-UNR. Ocampo y Esmeralda (2000) Rosario, Argentina
| |
Collapse
|
7
|
|
8
|
Mondal A, Wijzenbroek M, Bonfanti M, Díaz C, Kroes GJ. Thermal Lattice Expansion Effect on Reactive Scattering of H2 from Cu(111) at Ts = 925 K. J Phys Chem A 2013; 117:8770-81. [DOI: 10.1021/jp4042183] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arobendo Mondal
- Indian Institute of Science Education and Research Kolkata (IISER-K),
741252, Nadia, West Bengal, India
| | - Mark Wijzenbroek
- Leiden Institute of Chemistry,
Gorlaeus Laboratories, Leiden University, Post Office Box 9502, 2300 RA Leiden, The Netherlands
| | - Matteo Bonfanti
- Leiden Institute of Chemistry,
Gorlaeus Laboratories, Leiden University, Post Office Box 9502, 2300 RA Leiden, The Netherlands
| | - Cristina Díaz
- Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Geert-Jan Kroes
- Leiden Institute of Chemistry,
Gorlaeus Laboratories, Leiden University, Post Office Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
9
|
7D Quantum Dynamics of H2Scattering from Cu(111): The Accuracy of the Phonon Sudden Approximation. Z PHYS CHEM 2013. [DOI: 10.1524/zpch.2013.0405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Frankcombe TJ, Collins MA, Zhang DH. Modified Shepard interpolation of gas-surface potential energy surfaces with strict plane group symmetry and translational periodicity. J Chem Phys 2012; 137:144701. [DOI: 10.1063/1.4757149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
11
|
Molecular dynamics simulations based on reactive force-fields for surface chemical reactions. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
KROES GEERTJAN, SOMERS MARKF. SIX-DIMENSIONAL DYNAMICS OF DISSOCIATIVE CHEMISORPTION OF H2 ON METAL SURFACES. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633605001647] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The theory of time-dependent quantum dynamics of dissociative chemisorption of hydrogen on metal surfaces is reviewed, in the framework of electronically adiabatic scattering from static surfaces. Four implementations of the time-dependent wave packet (TDWP) method are discussed. In the direct product pseudo-spectral and the spherical harmonics pseudo-spectral methods, no use is made of the symmetry associated with the surface unit cell. This symmetry is exploited by the symmetry adapted wave packet and the symmetry adapted pseudo-spectral (SAPS) method, which are efficient for scattering at normal incidence. The SAPS method can be employed for potential energy surfaces of general form. Comparison to experiment shows that the TDWP method yields good, but not yet excellent, quantitative accuracy for dissociation of (ν = 0, j = 0) H 2 if the calculations are based on accurately fitted density functional theory calculations that are performed using the generalized gradient approximation. The influence of the molecule's vibration (rotation) is well (reasonably well) described. The theory does not yet yield quantitatively accurate results for rovibrationally inelastic scattering. The theory has helped with the interpretation of existing experimental results, for instance, by solving a parodox regarding the corrugation of Pt(111) as seen by reacting and scattering H 2. The theory has also provided some exciting new predictions, for instance, concerning where on the surface of Cu(100) H2 reacts depending on its vibrational state. Future theoretical studies of H 2 reacting on metal surfaces will likely be aimed at validating GGAs for molecule-surface interactions, and understanding trends in collisions of H 2 with complex metal surfaces.
Collapse
Affiliation(s)
- GEERT-JAN KROES
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - MARK F. SOMERS
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
13
|
Ueta H, Gleeson MA, Kleyn AW. The interaction of hyperthermal nitrogen with N-covered Ag(111). J Chem Phys 2011; 135:074702. [DOI: 10.1063/1.3615520] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Vurdu CD, Güvenç ZB. H(D) → D(H) + Cu(111) collision system: molecular dynamics study of surface temperature effects. J Chem Phys 2011; 134:164306. [PMID: 21528959 DOI: 10.1063/1.3583811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
All the channels of the reaction dynamics of gas-phase H (or D) atoms with D (or H) atoms adsorbed onto a Cu(111) surface have been studied by quasiclassical constant energy molecular dynamics simulations. The surface is flexible and is prepared at different temperature values, such as 30 K, 94 K, and 160 K. The adsorbates were distributed randomly on the surface to create 0.18 ML, 0.28 ML, and 0.50 ML of coverages. The multi-layer slab is mimicked by a many-body embedded-atom potential energy function. The slab atoms can move according to the exerted external forces. Treating the slab atoms non-rigid has an important effect on the dynamics of the projectile atom and adsorbates. Significant energy transfer from the projectile atom to the surface lattice atoms takes place especially during the first impact that modifies significantly the details of the dynamics of the collisions. Effects of the different temperatures of the slab are investigated in this study. Interaction between the surface atoms and the adsorbates is modeled by a modified London-Eyring-Polanyi-Sato (LEPS) function. The LEPS parameters are determined by using the total energy values which were calculated by a density functional theory and a generalized gradient approximation for an exchange-correlation energy for many different orientations, and locations of one- and two-hydrogen atoms on the Cu(111) surface. The rms value of the fitting procedure is about 0.16 eV. Many different channels of the processes on the surface have been examined, such as inelastic reflection of the incident hydrogen, subsurface penetration of the incident projectile and adsorbates, sticking of the incident atom on the surface. In addition, hot-atom and Eley-Rideal direct processes are investigated. The hot-atom process is found to be more significant than the Eley-Rideal process. Furthermore, the rate of subsurface penetration is larger than the sticking rate on the surface. In addition, these results are compared and analyzed as a function of the surface temperatures.
Collapse
Affiliation(s)
- Can D Vurdu
- Departmet of Physics, Faculty of Arts and Sciences, Kastamonu University, Kuzeykent TR-37100 Kastamonu, Turkey.
| | | |
Collapse
|
15
|
Bonfanti M, Díaz C, Somers MF, Kroes GJ. Hydrogen dissociation on Cu(111): the influence of lattice motion. Part I. Phys Chem Chem Phys 2011; 13:4552-61. [DOI: 10.1039/c0cp01746a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Martin-Gondre L, Crespos C, Larregaray P, Rayez JC, van Ootegem B, Conte D. Dynamics simulation of N(2) scattering onto W(100,110) surfaces: A stringent test for the recently developed flexible periodic London-Eyring-Polanyi-Sato potential energy surface. J Chem Phys 2010; 132:204501. [PMID: 20515094 DOI: 10.1063/1.3389479] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An efficient method to construct the six dimensional global potential energy surface (PES) for two atoms interacting with a periodic rigid surface, the flexible periodic London-Eyring-Polanyi-Sato model, has been proposed recently. The main advantages of this model, compared to state-of-the-art interpolated ab initio PESs developed in the past, reside in its global nature along with the small number of electronic structure calculations required for its construction. In this work, we investigate to which extent this global representation is able to reproduce the fine details of the scattering dynamics of N(2) onto W(100,110) surfaces reported in previous dynamics simulations based on locally interpolated PESs. The N(2)/W(100) and N(2)/W(110) systems are chosen as benchmarks as they exhibit very unusual and distinct dissociative adsorption dynamics although chemically similar. The reaction pathways as well as the role of dynamic trapping are scrutinized. Besides, elastic/inelastic scattering dynamics including internal state and angular distributions of reflected molecules are also investigated. The results are shown to be in fair agreement with previous theoretical predictions.
Collapse
Affiliation(s)
- L Martin-Gondre
- Institut des Sciences Moléculaires, UMR 5255 CNRS-Université Bordeaux 1, 351 Cours de la Libération, 33405 Talence Cedex, France
| | | | | | | | | | | |
Collapse
|
17
|
Martin-Gondre L, Crespos C, Larrégaray P, Rayez J, Conte D, van Ootegem B. Detailed description of the flexible periodic London–Eyring–Polanyi–Sato potential energy function. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2009.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Díaz C, Olsen RA, Auerbach DJ, Kroes GJ. Six-dimensional dynamics study of reactive and non reactive scattering of H2 from Cu(111) using a chemically accurate potential energy surface. Phys Chem Chem Phys 2010; 12:6499-519. [DOI: 10.1039/c001956a] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Erkol H, Demiralp E. Exact solutions for a Hamiltonian with the Morse potential and the Dirac delta shell interactions. Mol Phys 2009. [DOI: 10.1080/00268970903140441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Martin-Gondre L, Crespos C, Larregaray P, Rayez J, van Ootegem B, Conte D. Is the LEPS potential accurate enough to investigate the dissociation of diatomic molecules on surfaces? Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.01.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Ludwig J, Vlachos DG. Molecular dynamics of hydrogen dissociation on an oxygen covered Pt(111) surface. J Chem Phys 2008; 128:154708. [DOI: 10.1063/1.2902981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Kroes GJ, Pijper E, Salin A. Dissociative chemisorption of H2 on the Cu(110) surface: a quantum and quasiclassical dynamical study. J Chem Phys 2008; 127:164722. [PMID: 17979386 DOI: 10.1063/1.2798112] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Six-dimensional quantum dynamical and quasiclassical trajectory (QCT) calculations are reported for the reaction and vibrationally inelastic scattering of (v = 0,1,j = 0) H(2) scattering from Cu(110), and for the reaction and rovibrationally elastic and inelastic scattering of (v = 1,j = 1) H(2) scattering from Cu(110). The dynamics results were obtained using a potential energy surface obtained with density functional theory using the PW91 functional. The reaction probabilities computed with quantum dynamics for (v = 0,1,j = 0) were in excellent agreement with the QCT results obtained earlier for these states, thereby validating the QCT approach to sticking of hydrogen on Cu(110). The vibrational de-excitation probability P(v=1,j = 0 --> v = 0) computed with the QCT method is in remarkably good agreement with the quantum dynamical results for normal incidence energies E(n) between 0.2 and 0.6 eV. The QCT result for the vibrational excitation probability P(v = 0,j = 0 --> v = 1) is likewise accurate for E(n) between 0.8 and 1 eV, but the QCT method overestimates vibrational excitation for lower E(n). The QCT method gives probabilities for rovibrationally (in)elastic scattering, P(v = 1,j = 1 --> v('),j(')), which are in remarkably good agreement with quantum dynamical results. The rotationally averaged, initial vibrational state-selective reaction probability obtained with QCT agrees well with the initial vibrational state-selective reaction probability extracted from molecular beam experiments for v = 1, for the range of collision energies for which the v=1 contribution to the measured total sticking probability dominates. The quantum dynamical probabilities for rovibrationally elastic scattering of (v = 1,j = 1) H(2) from Cu(110) are in good agreement with experiment for E(n) between 0.08 and 0.25 eV.
Collapse
Affiliation(s)
- G J Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | |
Collapse
|
23
|
Ludwig J, Vlachos DG. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling. J Chem Phys 2007; 127:154716. [PMID: 17949200 DOI: 10.1063/1.2794338] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We outline a hybrid multiscale approach for the construction of ab initio potential energy surfaces (PESs) useful for performing six-dimensional (6D) classical or quantum mechanical molecular dynamics (MD) simulations of diatomic molecules reacting at single crystal surfaces. The algorithm implements concepts from the corrugation reduction procedure, which reduces energetic variation in the PES, and uses neural networks for interpolation of smoothed ab initio data. A novelty sampling scheme is implemented and used to identify configurations that are most likely to be predicted inaccurately by the neural network. This hybrid multiscale approach, which couples PES construction at the electronic structure level to MD simulations at the atomistic scale, reduces the number of density functional theory (DFT) calculations needed to specify an accurate PES. Due to the iterative nature of the novelty sampling algorithm, it is possible to obtain a quantitative measure of the convergence of the PES with respect to the number of ab initio calculations used to train the neural network. We demonstrate the algorithm by first applying it to two analytic potentials, which model the H2/Pt(111) and H2/Cu(111) systems. These potentials are of the corrugated London-Eyring-Polanyi-Sato form, which are based on DFT calculations, but are not globally accurate. After demonstrating the convergence of the PES using these simple potentials, we use DFT calculations directly and obtain converged semiclassical trajectories for the H2/Pt(111) system at the PW91/generalized gradient approximation level. We obtain a converged PES for a 6D hydrogen-surface dissociation reaction using novelty sampling coupled directly to DFT. These results, in excellent agreement with experiments and previous theoretical work, are compared to previous simulations in order to explore the sensitivity of the PES (and therefore MD) to the choice of exchange and correlation functional. Despite having a lower energetic corrugation in our PES, we obtain a broader reaction probability curve than previous simulations, which is attributed to increased geometric corrugation in the PES and the effect of nonparallel dissociation pathways.
Collapse
Affiliation(s)
- Jeffery Ludwig
- Department of Chemical Engineering and Center for Catalytic Science and Technology, University of Delaware, Newark, Delaware 19716-3110, USA
| | | |
Collapse
|
24
|
Fernandez-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG. Modeling the kinetics of bimolecular reactions. Chem Rev 2007; 106:4518-84. [PMID: 17091928 DOI: 10.1021/cr050205w] [Citation(s) in RCA: 400] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antonio Fernandez-Ramos
- Departamento de Quimica Fisica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
25
|
Ludwig J, Vlachos DG, van Duin ACT, Goddard WA. Dynamics of the Dissociation of Hydrogen on Stepped Platinum Surfaces Using the ReaxFF Reactive Force Field. J Phys Chem B 2006; 110:4274-82. [PMID: 16509724 DOI: 10.1021/jp0561064] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dissociation of hydrogen on eight platinum surfaces, Pt(111), Pt(100), Pt(110), Pt(211), Pt(311), Pt(331), Pt(332), and Pt(533), has been studied using molecular dynamics and the reactive force field, ReaxFF. The force field, which includes the degrees of freedom of the atoms in the platinum substrate, was used unmodified with potential parameters determined from previous calculations performed on a training set exclusive of the surfaces considered in this work. The energetics of the eight surfaces in the absence of hydrogen at 0 K were first compared to previous density functional theory (DFT) calculations and found to underestimate excess surface energy. However, taking Pt(111) as a reference state, we found that the trend between surfaces was adequately predicted to justify a relative comparison between the various stepped surfaces. To assess the strengths and weaknesses of the force field, we performed detailed simulations on two stepped surfaces, Pt(533) and Pt(211), and compared our findings to published experimental and theoretical results. In general, the absolute magnitude of reaction rate predictions was low, a result of the force field's tendency to underpredict surface energy. However, when normalized, the simulations show the correct linear scaling with incident energy and angular dependence at collision energies where a direct dissociation mechanism is observed. Because ReaxFF includes all degrees of freedom in the substrate, we carried out simulations aimed at understanding surface-temperature effects on Pt(533). On the basis of the results on Pt(533)/Pt(211), we studied the reaction of hydrogen at normal incidence on all eight surfaces in a range of energies where we anticipated the force field to give reasonable qualitative trends. These results were subsequently fit to a simple linear model that predicts the enhanced reactivity of surfaces containing 111-type atomic steps versus 100-type atomic steps. This model provides a simple framework for predicting high-energy/high-temperature kinetics of complex surfaces not vicinal to Pt(111).
Collapse
Affiliation(s)
- Jeffery Ludwig
- Department of Chemical Engineering and Center for Catalytic Science and Technology, University of Delaware, Newark, Delaware 19716-3110, USA
| | | | | | | |
Collapse
|
26
|
Pineau N, Busnengo HF, Rayez JC, Salin A. Relaxation of hot atoms following H2 dissociation on a Pd(111) surface. J Chem Phys 2005; 122:214705. [PMID: 15974760 DOI: 10.1063/1.1924550] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the relaxation of hot H atoms produced by dissociation of H2 molecules on the Pd111 surface. Ab initio density-functional theory calculations and the "corrugation reducing procedure" are used to determine the interaction potential for a H atom in front of a rigid surface as well as its modification under surface-atom vibrations. A slab of 80 Pd atoms is used to model the surface together with "generalized Langevin oscillators" to account for energy dissipation to the bulk. We show that the energy relaxation is fast, about 75% of the available energy being lost by the hot atoms after 0.5 ps. As a consequence, the hot atoms do not travel more than a few angstroms along the surface before being trapped into the potential well located over the hollow site.
Collapse
Affiliation(s)
- N Pineau
- Laboratoire de Physico-Chimie Moléculaire, Unité Mixte de Recherche (UMR) 5803 Centre National de la Recherche Scientifique (CNRS)--Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France
| | | | | | | |
Collapse
|
27
|
Nave S, Lemoine D, Somers MF, Kingma SM, Kroes GJ. Six-dimensional quantum dynamics of (v=0,j=0)D2 and of (v=1,j=0)H2 scattering from Cu(111). J Chem Phys 2005; 122:214709. [PMID: 15974764 DOI: 10.1063/1.1902944] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report six-dimensional quantum dynamics calculations of the dissociative scattering of molecular hydrogen from the copper111 surface. Two potential energy surfaces are investigated and the results are compared with experiment. Our study completes the preliminary work of Somers et al. [Chem. Phys. Lett. 360, 390 (2002)] and focuses on the role of initial vibrational excitation and on isotopic effects. None of the two investigated potential energy surfaces is found satisfactory: the use of neither potential yields reaction and vibrational excitation probabilities and vibrational efficacies that are in close agreement with experiment. In addition to showing the shortcomings of existing potential energy surfaces we point out an inconsistency in the experimental fits for D2.
Collapse
Affiliation(s)
- Sven Nave
- Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Centre d'Etudes et de Recherches Lasers et Applications, Université de Lille 1, Bâtiment P5, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | |
Collapse
|
28
|
Quattrucci JG, Jackson B. Quasiclassical study of Eley–Rideal and hot atom reactions of H atoms with Cl adsorbed on a Au(111) surface. J Chem Phys 2005; 122:074705. [PMID: 15743263 DOI: 10.1063/1.1851498] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Using quasiclassical methods and a potential energy surface based on total energy calculations, we have found that H atoms react with Cl atoms adsorbed onto a Au(111) surface to produce HCl via Eley-Rideal (ER), hot atom (HA), and Langmuir-Hinschelwood (LH) pathways. We observe two ER mechanisms. At small normal incidence energies reaction results from a more or less direct collision with Cl, leading to a large amount of product vibration (nu=8), and relatively cold rotation and translation. In the second mechanism, more dominant at near-normal incidence and/or large incident energies, the H atom passes near Cl, recoils from the metal, and is pulled into orbit about Cl. This leads to broader product state distributions, and a more even distribution of the 3.0 eV of available energy among the product degrees of freedom, similar to products formed via the HA pathway. Overall, ER processes tend to contribute less than 10% to the reactivity, and most of the HCl is formed via HA processes. There is an increase in HCl formation with surface temperature for both the ER and HA mechanisms, but this increase is relatively weak. We observe typically about 12% H atom sticking, which would lead to HCl formation via a LH process in the experiments, above 140 K. We observe a weak forward scattering due to the direct ER component, as in the experiments. However, unlike the experiments, we observe a dip in our product angular distributions about thetaf=0 degrees, which we ascribe to our quasiclassical approximation. While we tend to see more energy in the hot products than in the experiments, our product translational, rotational, and vibrational distributions are in relatively reasonable agreement with those measured. One major disagreement with experiment is that there is apparently a significant sticking of the H atom at low temperatures, leading to a large LH component. In addition, the ER and HA components increase much more strongly with temperature than in the calculations. It is possible that electon-hole pair excitations in the metal strongly relax both the H atom and the excited HCl molecules formed.
Collapse
Affiliation(s)
- Joseph G Quattrucci
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
29
|
Lai W, Xie D, Yang J, Zhang DH. A first-principles potential energy surface and vibrational states for hydrogen on Cu(100). J Chem Phys 2004; 121:7434-9. [PMID: 15473816 DOI: 10.1063/1.1796236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Density-functional theory calculations based on plane-wave expansion and pseudopotential treatment were carried out for atomic hydrogen on a rigid Cu(100) surface. A global potential energy surface was then obtained by using a three-dimensional spline interpolation. It is found that the minimum of the potential is located at the fourfold hollow site with a diffusion barrier of 88 meV at the bridge site. The vibrational states of atomic hydrogen and deuterium on the Cu(100) surface were calculated on the potential surface. Our calculations show that the vibrational states A(1) (0), A(1) (1), E(1), and B(2) (1) of H/Cu(100) exhibit strong localized character and very narrow band widths, whereas other excited vibrational states have considerable delocalized character and broad band widths. The vibrational frequency of 71.2 (51.5) meV for H(D) in the perpendicular direction obtained in this study is in good agreement with the experimentally observed value of 70 (52) meV.
Collapse
Affiliation(s)
- Wenzhen Lai
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, Department of Chemistry, Nanjing University, Nanjing 210093, China
| | | | | | | |
Collapse
|
30
|
Martinazzo R, Assoni S, Marinoni G, Tantardini GF. Hot-atom versus Eley–Rideal dynamics in hydrogen recombination on Ni(100). I. The single-adsorbate case. J Chem Phys 2004; 120:8761-71. [PMID: 15267808 DOI: 10.1063/1.1695316] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We compare the efficiency of the Eley-Rideal (ER) reaction with the formation of hot-atom (HA) species in the simplest case, i.e., the scattering of a projectile off a single adsorbate, considering the Hydrogen and Hydrogen-on-Ni(100) system. We use classical mechanics and the accurate embedded diatomics-in-molecules potential to study the collision system over a wide range of collision energies (0.10-1.50 eV), both with a rigid and a nonrigid Ni substrate and for impact on the occupied and neighboring empty cells. In the rigid model metastable and truly bound hot-atoms occur and we find that the cross section for the formation of bound hot-atoms is considerably higher than that for the ER reaction over the whole range of collision energies examined. Metastable hot-atoms form because of the inefficient energy transfer to the adsorbate and have lifetimes of the order 0.1-0.7 ps, depending on the collision energy. When considering the effects of lattice vibrations we find, on average, a consistent energy transfer to the substrate, say 0.1-0.2 eV, which forced us to devise a two-step dynamical model to get rid of the problems associated with the use of periodic boundary conditions. Results for long-lived HA formation due to scattering on the occupied cell at a surface temperature of 120 K agree well with those of the rigid model, suggesting that in the above process the substrate plays only a secondary role and further calculations at surface temperatures of 50 and 300 K are in line with these findings. However, considerably high cross sections for formation of long-lived hot-atoms result also from scattering off the neighboring cells where the energy transfer to the lattice cannot be neglected. Metastable hot-atoms are reduced in number and have usually lifetimes shorter than those of the rigid-model, say less than 0.3 ps. In addition, ER cross sections are only slightly affected by the lattice motion and show a little temperature dependence. Finally, we find also that absorption and reflection strongly depend on the correct consideration of lattice vibrations and the occurrence of trapping.
Collapse
Affiliation(s)
- R Martinazzo
- Department of Physical Chemistry and Electrochemistry, University of Milan, V. Golgi 19, 20133 Milan, Italy
| | | | | | | |
Collapse
|
31
|
Crespos C, Collins MA, Pijper E, Kroes GJ. Application of the modified Shepard interpolation method to the determination of the potential energy surface for a molecule–surface reaction: H2+Pt(111). J Chem Phys 2004; 120:2392-404. [PMID: 15268379 DOI: 10.1063/1.1637337] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have used a modified Shepard (MS) interpolation method, initially developed for gas phase reactions, to build a potential energy surface (PES) for studying the dissociative chemisorption of H2 on Pt(111). The aim was to study the efficiency and the accuracy of this interpolation method for an activated multidimensional molecule-surface reactive problem. The strategy used is based on previous applications of the MS method to gas phase reactions, but modified to take into account special features of molecule-surface reactions, like the presence of many similar reaction pathways which vary only slightly with surface site. The efficiency of the interpolation method was tested by using an already existing PES to provide the input data required for the construction of the new PES. The construction of the new PES required half as many ab initio data points as the construction of the old PES, and the comparison of the two PESs shows that the method is able to reproduce with good accuracy the most important features of the H2 + Pt(111) interaction potential. Finally, accuracy tests were done by comparing the results of dynamics simulations using the two different PESs. The good agreement obtained for reaction probabilities and probabilities for rotationally and diffractionally inelastic scattering shows clearly that the MS interpolation method can be used efficiently to yield accurate PESs for activated molecule-surface reactions.
Collapse
Affiliation(s)
- C Crespos
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
32
|
Meijer AJHM, Fisher AJ, Clary DC. Surface Coverage Effects on the Formation of Molecular Hydrogen on a Graphite Surface via an Eley−Rideal Mechanism. J Phys Chem A 2003. [DOI: 10.1021/jp035809n] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Andrew J. Fisher
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - David C. Clary
- Department of Physical and Theoretical Chemistry, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
33
|
Jørgensen S, Kosloff R. Two-pulse atomic coherent control spectroscopy of Eley–Rideal reactions: An application of an atom laser. J Chem Phys 2003. [DOI: 10.1063/1.1576383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Quattrucci JG, Jackson B, Lemoine D. Eley–Rideal reactions of H atoms with Cl adsorbed on Au(111): Quantum and quasiclassical studies. J Chem Phys 2003. [DOI: 10.1063/1.1533735] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
35
|
Jackson B. Eley–Rideal and hot atom reactions between H atoms on metal and graphite surfaces. SURFACE DYNAMICS 2003. [DOI: 10.1016/s1571-0785(03)11003-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Lemoine D, Quattrucci JG, Jackson B. Efficient Eley-Rideal reactions of H atoms with single Cl adsorbates on Au(111). PHYSICAL REVIEW LETTERS 2002; 89:268302. [PMID: 12484860 DOI: 10.1103/physrevlett.89.268302] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2002] [Indexed: 05/24/2023]
Abstract
Density functional theory is used to construct an interaction model for H atoms with Cl over Au(111). Single-adsorbate Eley-Rideal reactions are investigated with quantum and quasiclassical methods. The reaction cross sections, amounting to 2-3 A(2), are much larger than for HD recombinations on metals. This can be traced to the adsorbed Cl being relatively far above the surface, the H-Cl interaction prevailing over the H-substrate attraction for a sizable range of impact parameters.
Collapse
Affiliation(s)
- Didier Lemoine
- Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Centre d'Etudes et de Recherches Lasers et Applications, Université de Lille 1, Bâtiment P5, 59655 Villeneuve d'Ascq CEDEX, France
| | | | | |
Collapse
|
37
|
Chambers SA, Droubay T, Jennison DR, Mattsson TR. Laminar growth of ultrathin metal films on metal oxides: Co on hydroxylated alpha-Al2O3(0001). Science 2002; 297:827-31. [PMID: 12161651 DOI: 10.1126/science.1073404] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Metals deposited in vacuum on metal oxides such as alumina normally grow as three-dimensional clusters because of weak adatom-substrate interactions. This tendency hinders our ability to form interfaces of ultrathin, laminar metal films on oxides for use in microelectronics and other technologies where nanostructural control is desired. We present experimental and theoretical results showing that room temperature Co deposition on fully hydroxylated clean sapphire (alpha-Al2O3) produces a surface chemical reaction that leads to laminar growth, despite a large mismatch in lattice constants. This process should be applicable to a wide range of metals and metal oxides.
Collapse
Affiliation(s)
- S A Chambers
- Pacific Northwest National Laboratory, Post Office Box 999, MSK8-93, Richland, WA 99352, USA.
| | | | | | | |
Collapse
|
38
|
Six-dimensional quantum dynamics of scattering of (v=0,j=0) H2 and D2 from Cu(111): test of two LEPS potential energy surfaces. Chem Phys Lett 2002. [DOI: 10.1016/s0009-2614(02)00869-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Sha X, Jackson B, Lemoine D. Quantum studies of Eley–Rideal reactions between H atoms on a graphite surface. J Chem Phys 2002. [DOI: 10.1063/1.1463399] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Olsen RA, Busnengo HF, Salin A, Somers MF, Kroes GJ, Baerends EJ. Constructing accurate potential energy surfaces for a diatomic molecule interacting with a solid surface: H2+Pt(111) and H2+Cu(100). J Chem Phys 2002. [DOI: 10.1063/1.1446852] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
41
|
Guvenc ZB, Sha X, Jackson B. Eley–Rideal and hot atom reactions between hydrogen atoms on Ni(100): Electronic structure and quasiclassical studies. J Chem Phys 2001. [DOI: 10.1063/1.1414374] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Molinari E, Tomellini M. Non-equilibrium vibrational kinetics and `hot atom' models in the recombination of hydrogen atoms on surfaces. Chem Phys 2001. [DOI: 10.1016/s0301-0104(01)00388-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Jackson B, Lemoine D. Eley–Rideal reactions between H atoms on metal and graphite surfaces: The variation of reactivity with substrate. J Chem Phys 2001. [DOI: 10.1063/1.1328041] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Busnengo HF, Salin A, Dong W. Representation of the 6D potential energy surface for a diatomic molecule near a solid surface. J Chem Phys 2000. [DOI: 10.1063/1.481377] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Shalashilin DV, Jackson B, Persson M. Eley–Rideal and hot-atom reactions of H(D) atoms with D(H)-covered Cu(111) surfaces; quasiclassical studies. J Chem Phys 1999. [DOI: 10.1063/1.479040] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Dai J, Light JC. Quantum dynamics of an Eley–Rideal gas–surface reaction: Four dimensional planar model for H(D)(gas)+D(H)-Cu(111). J Chem Phys 1999. [DOI: 10.1063/1.478554] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|