1
|
Zhou F, Di Pasquale N, Carbone P. Applicability of the thermodynamic and mechanical route to Young's equation for rigid and flexible solids: A molecular dynamics simulations study of a Lennard-Jones system model. J Chem Phys 2025; 162:054119. [PMID: 39912502 DOI: 10.1063/5.0244126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025] Open
Abstract
The wetting properties of a liquid in contact with a solid are commonly described by Young's equation, which defines the relationship between the angle made by a fluid droplet onto the solid surface and the interfacial properties of the different interfaces involved. When modeling such interfacial systems, several assumptions are usually made to determine this angle of contact, such as a completely rigid solid or the use of the tension at the interface instead of the surface free energy. In this work, we perform molecular dynamics simulations of a Lennard-Jones liquid in contact with a Lennard-Jones crystal and compare the contact angles measured from a droplet simulation with those calculated using Young's equation based on surface free energy or surface stress. We analyze cases where the solid atoms are kept frozen in their positions and where they are allowed to relax and simulate surfaces with different wettability and degrees of softness. Our results show that using either surface free energy or surface stress in Young's equation leads to similar contact angles but different interfacial properties. We find that the approximation of keeping the solid atoms frozen must be done carefully, especially if the liquid can efficiently pack at the interface. Finally, we show that to correctly reproduce the measured contact angles when the solid becomes soft, the quantity to be used in Young's equation is the surface free energy only and that the error committed in using the surface stress becomes larger as the softness of the solid increases.
Collapse
Affiliation(s)
- Fulu Zhou
- Department of Chemical Engineering, University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
| | - Nicodemo Di Pasquale
- Department of Industrial Chemistry "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, Bologna, Italy
| | - Paola Carbone
- Department of Chemistry, University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
| |
Collapse
|
2
|
Zhang H, Zhang H, Wang F, Nestler B. Exploration of contact angle hysteresis mechanisms: From microscopic to macroscopic. J Chem Phys 2024; 161:194705. [PMID: 39555764 DOI: 10.1063/5.0232287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
Variations from equilibrium Young's angle, known as contact angle hysteresis (CAH), are frequently observed upon droplet deposition on a solid surface. This ubiquitous phenomenon indicates the presence of multiple local surface energy minima for the sessile droplet. Previous research primarily explains CAH via considering macroscopic roughness, such as topographical defects, which alter the effective interfacial energy between the fluid phase and the solid phase, thereby shifting the global surface energy minimum. One typical example is the classic Cassie-Baxter-Wenzel theory. Here, we propose an alternative microscopic mechanism that emphasizes the complexity of molecular rearrangements at the fluid-solid interface, treating their interfacial tensions as variables, which results in multiple local surface energy minima. Our theoretical framework demonstrates that CAH can occur even on chemically homogeneous and mechanically smooth-flat substrates, aligning with previously unexplained experimental observations. In addition, we explore the interplay between macroscopic and microscopic roughness in influencing CAH and clarify the contrasting wetting behaviors-the lotus effect and the rose petal effect-on hierarchical roughness from a thermodynamic perspective. This work provides valuable insights into surface tension determination by restoring the natural physical properties of interfaces and illuminates the multifaceted mechanisms underlying the everyday occurrences of CAH.
Collapse
Affiliation(s)
- Hongmin Zhang
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Haodong Zhang
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Fei Wang
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Britta Nestler
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
- Institute of Digital Materials Science (IDM), Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
| |
Collapse
|
3
|
Te Vrugt M, Topp L, Wittkowski R, Heuer A. Microscopic derivation of the thin film equation using the Mori-Zwanzig formalism. J Chem Phys 2024; 161:094904. [PMID: 39225531 DOI: 10.1063/5.0217535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
The hydrodynamics of thin films is typically described using macroscopic models whose connection to the microscopic particle dynamics is a subject of ongoing research. Existing methods based on density functional theory provide a good description of static thin films but are not sufficient for understanding nonequilibrium dynamics. In this work, we present a microscopic derivation of the thin film equation using the Mori-Zwanzig projection operator formalism. This method allows to directly obtain the correct gradient dynamics structure along with microscopic expressions for mobility and free energy. Our results are verified against molecular dynamics simulations for both simple fluids and polymers.
Collapse
Affiliation(s)
- Michael Te Vrugt
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Leon Topp
- Institute of Physical Chemistry, Universität Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institute of Theoretical Physics, Center for Soft Nanoscience, Universität Münster, 48149 Münster, Germany
| | - Andreas Heuer
- Institute of Physical Chemistry, Universität Münster, 48149 Münster, Germany
| |
Collapse
|
4
|
Wesenberg L, Müller M. Role of Interaction Range and Buoyancy on the Adhesion of Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38319679 PMCID: PMC10883059 DOI: 10.1021/acs.langmuir.3c02715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Vesicles on substrates play a fundamental role in many biological processes, ranging from neurotransmitter release at the synapse on small scales to the nutrient intake of trees by large vesicles. For these processes, the adsorption or desorption of vesicles to biological substrates is crucial. Consequently, it is important to understand the factors determining whether and for how long a vesicle adsorbs to a substrate and what shape it will adopt. Here, we systematically study the adsorption of a vesicle to planar substrates with short- and long-range interactions, with and without buoyancy. We assume an axially symmetric system throughout our simulations. Previous studies often considered a contact potential of zero range and neutral buoyancy. The interaction range alters the location and order of the adsorption transition and is particularly important for small vesicles, e.g., in the synapse. Whereas even small density differences between the inside and the outside of the vesicle give rise to strong buoyancy effects for large vesicles, e.g., giant unilamellar vesicles, as buoyancy effects scale with the fourth power of the vesicle size. We find that (i) an attractive membrane-substrate potential with nonzero spatial extension leads to a pinned state, where the vesicle benefits from the attractive membrane-substrate interaction without significant deformation. The adsorption transition is of first order and occurs when the substrate switches from repulsive to attractive. (ii) Buoyancy shifts the transversality condition, which relates the maximal curvature in the contact zone to the adhesion strength and bending rigidity, up/downward, depending on the direction of the buoyancy force. The magnitude of the shift is influenced by the range of the potential. For upward buoyancy, adsorbed vesicles are at most metastable. We determine the stability limit and the desorption mechanisms and compile the thermodynamic data into an adsorption diagram. Our findings reveal that buoyancy, as well as spatially extended interactions, are essential when quantitatively comparing experiments to theory.
Collapse
Affiliation(s)
- Lucia Wesenberg
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Areshi M, Tseluiko D, Thiele U, Goddard BD, Archer AJ. Binding potential and wetting behavior of binary liquid mixtures on surfaces. Phys Rev E 2024; 109:024801. [PMID: 38491689 DOI: 10.1103/physreve.109.024801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/08/2024] [Indexed: 03/18/2024]
Abstract
We present a theory for the interfacial wetting phase behavior of binary liquid mixtures on rigid solid substrates, applicable to both miscible and immiscible mixtures. In particular, we calculate the binding potential as a function of the adsorptions, i.e., the excess amounts of each of the two liquids at the substrate. The binding potential fully describes the corresponding interfacial thermodynamics. Our approach is based on classical density functional theory. Binary liquid mixtures can exhibit complex bulk phase behavior, including both liquid-liquid and vapor-liquid phase separation, depending on the nature of the interactions among all the particles of the two different liquids, the temperature, and the chemical potentials. Here we show that the interplay between the bulk phase behavior of the mixture and the properties of the interactions with the substrate gives rise to a wide variety of interfacial phase behaviors, including mixing and demixing situations. We find situations where the final state is a coexistence of up to three different phases. We determine how the liquid density profiles close to the substrate change as the interaction parameters are varied and how these determine the form of the binding potential, which in certain cases can be a multivalued function of the adsorptions. We also present profiles for sessile droplets of both miscible and immiscible binary liquids.
Collapse
Affiliation(s)
- Mounirah Areshi
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
- Department of Mathematics, Faculty of Science, University of Tabuk, P. O. Box 741, Tabuk 71491, Saudi Arabia
| | - Dmitri Tseluiko
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
- Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Uwe Thiele
- Institute of Theoretical Physics, University of Münster, 48149 Münster, Germany
- Center for Nonlinear Science (CeNoS), University of Münster, 48149 Münster, Germany
| | - Benjamin D Goddard
- School of Mathematics and the Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Andrew J Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
- Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
6
|
Jana PK, Bačová P, Schneider L, Kobayashi H, Hollborn KU, Polińska P, Burkhart C, Harmandaris VA, Müller M. Wall-Spring Thermostat: A Novel Approach for Controlling the Dynamics of Soft Coarse-Grained Polymer Fluids at Surfaces. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pritam Kumar Jana
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37977 Göttingen, Germany
| | - Petra Bačová
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology─Hellas, Heraklion GR-71110, Greece
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, IMEYMAT, Campus Universitario Río San Pedro s/n, Puerto Real, Cádiz 11510, Spain
| | - Ludwig Schneider
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37977 Göttingen, Germany
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Hideki Kobayashi
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37977 Göttingen, Germany
| | - Kai-Uwe Hollborn
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37977 Göttingen, Germany
| | | | - Craig Burkhart
- Goodyear Research, The Goodyear Tire and Rubber Company, 142 Goodyear Boulevard, Akron, Ohio 44305, United States
| | - Vagelis A. Harmandaris
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology─Hellas, Heraklion GR-71110, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion GR-71110, Greece
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37977 Göttingen, Germany
| |
Collapse
|
7
|
Butt HJ, Liu J, Koynov K, Straub B, Hinduja C, Roismann I, Berger R, Li X, Vollmer D, Steffen W, Kappl M. Contact angle hysteresis. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Boccardo F, Rovaris F, Tripathi A, Montalenti F, Pierre-Louis O. Stress-Induced Acceleration and Ordering in Solid-State Dewetting. PHYSICAL REVIEW LETTERS 2022; 128:026101. [PMID: 35089777 DOI: 10.1103/physrevlett.128.026101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 11/09/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
We report on the influence of elastic strain on solid-state dewetting. Using continuum modeling, we first study the consequences of elastic stress on the pinching of the film away from the triple line during dewetting. We find that elastic stress in the solid film decreases both the time and the distance at which the film pinches in such a way that the dewetting front is accelerated. In addition, the spatial organization of islands emerging from the dewetting process is affected by strain. As an example, we demonstrate that ordered arrays of quantum dots can be achieved from solid-state dewetting of a square island in the presence of elastic stress.
Collapse
Affiliation(s)
- Francesco Boccardo
- Institut Lumière Matière, UMR5306 Université Lyon 1 - CNRS, 69622 Villeurbanne, France
| | - Fabrizio Rovaris
- L-NESS and Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano, Italy
| | - Ashwani Tripathi
- Center for Soft and Living Matter, Institute of Basic Sciences, 44919 Ulsan, Republic of Korea
| | - Francesco Montalenti
- L-NESS and Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano, Italy
| | - Olivier Pierre-Louis
- Institut Lumière Matière, UMR5306 Université Lyon 1 - CNRS, 69622 Villeurbanne, France
| |
Collapse
|
9
|
Ruan Y, Lu Y, An L, Wang ZG. Shear Banding in Entangled Polymers: Stress Plateau, Banding Location, and Lever Rule. ACS Macro Lett 2021; 10:1517-1523. [PMID: 35549139 DOI: 10.1021/acsmacrolett.1c00518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using molecular dynamics simulation, we study shear banding of entangled polymer melts under a steady shear. The steady shear stress vs shear rate curve exhibits a plateau spanning nearly two decades of shear rates in which shear banding is observed, and the steady shear stress remains unchanged after switching the shear rates halfway in the range of shear rates within the plateau region. In addition, we find strong correlation in the location of the shear bands between different shear rates starting from the same microstate configurations at equilibrium, which suggests the importance of the inherent structural heterogeneity in the entangled polymer network for shear banding. Furthermore, for the steady shear bands persisting to the longest simulated time of 9.0τd0 (disengagement time), the shear rate in the slow band and the relative proportion of the bands do not change very much with the increase of imposed shear rate, but the shear rate in the fast band increases approximately in proportion to the imposed shear rates, in contradiction to the lever rule.
Collapse
Affiliation(s)
- Yongjin Ruan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Lukyanov AV. Non-locality of the contact line in dynamic wetting phenomena. J Colloid Interface Sci 2021; 608:2131-2141. [PMID: 34752983 DOI: 10.1016/j.jcis.2021.10.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS The notion of the contact line is fundamental to capillary science, where in a large category of wetting phenomena, it was always regarded as a one-dimensional object involving only microscopic length scales. This prevailing opinion had a strong impact and repercussions on the developing theories and methodologies used to interpret experimental data. It is hypothesised that this is not the case under certain conditions leading to non-local effects and requiring the development of a modified force balance at the contact line. THEORY AND SIMULATIONS Using the first principles of molecular dynamic simulations and a unique combination of steady state conditions and observables, the microscopic structure of the contact region and its connections with macroscopic quantities of capillary flows was revealed for the first time. FINDINGS The contact line is shown to become a non-local, macroscopic object involving rather complex interplay between microscopic distributions of density, velocity and friction force. It was established that the non-locality effects, which cannot be in principle captured by localised methodologies, kick off at a universal tipping point and lead to a modified force balance. The developed framework is applicable to a wide range of capillary flows to identify and analyse this regime in applications.
Collapse
Affiliation(s)
- Alex V Lukyanov
- School of Mathematical and Physical Sciences, University of Reading, Reading RG6 6AX, UK.
| |
Collapse
|
11
|
Tripathi AK, Pierre-Louis O. Disjoining-pressure-induced acceleration of mass shedding in solid-state dewetting. Phys Rev E 2020; 101:042802. [PMID: 32422706 DOI: 10.1103/physreve.101.042802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/27/2020] [Indexed: 11/07/2022]
Abstract
Surface-diffusion mediated solid-state dewetting has been observed and studied in a number of different systems during the past two decades. This process can be accompanied by the pinching of the film at a finite distance from the retracting triple line. The repetition of this pinching is often referred to as periodic mass shedding. We show that the disjoining pressure of the film can accelerate mass shedding by orders of magnitude in ultrathin films with nanometric thickness. In the presence of power-law disjoining pressures induced by van der Waals forces, the mass shedding time exhibits an approximate power-law dependence on film thickness t_{ms}∼h[over ¯]^{ν}, with ν≈6. Exponentially decaying disjoining forces also give rise to a strong acceleration of mass shedding. However, due to the finite range of the exponential potential, the mass shedding time does not exhibit a simple power-law dependence on the thickness, and is controlled by a cutoff thickness. In addition, two-dimensional simulations indicate that, within the range of thicknesses that we have studied and for isotropic dynamics, the transversal instability of a straight front does not lead to fingering, and mass shedding is the dominant instability of the dewetting front. Finally, we also show that no significant difference is observed in the dewetting dynamics between simulations based on a model with a wetting potential integrated over the film surface area, or over the projected substrate area.
Collapse
Affiliation(s)
- Ashwani K Tripathi
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Olivier Pierre-Louis
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| |
Collapse
|
12
|
Yin H, Sibley DN, Archer AJ. Binding potentials for vapour nanobubbles on surfaces using density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:315102. [PMID: 30978706 DOI: 10.1088/1361-648x/ab18e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We calculate density profiles of a simple model fluid in contact with a planar surface using density functional theory (DFT), in particular for the case where there is a vapour layer intruding between the wall and the bulk liquid. We apply the method of Hughes et al (2015 J. Chem. Phys. 142 074702) to calculate the density profiles for varying (specified) amounts of the vapour adsorbed at the wall. This is equivalent to varying the thickness h of the vapour at the surface. From the resulting sequence of density profiles we calculate the thermodynamic grand potential as h is varied and thereby determine the binding potential as a function of h. The binding potential obtained via this coarse-graining approach allows us to determine the disjoining pressure in the film and also to predict the shape of vapour nano-bubbles on the surface. Our microscopic DFT based approach captures information from length scales much smaller than some commonly used models in continuum mechanics.
Collapse
Affiliation(s)
- Hanyu Yin
- Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | | | | |
Collapse
|
13
|
Rongqi S, Qingshun B, Xin H, Aimin Z, Feihu Z. Molecular dynamics simulation of the spreading of the nanosized droplet on a graphene-coated substrate: the effect of the contact line forces. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1479750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Shen Rongqi
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Bai Qingshun
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - He Xin
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Zhang Aimin
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Zhang Feihu
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, People’s Republic of China
| |
Collapse
|
14
|
Thiele U. Recent advances in and future challenges for mesoscopic hydrodynamic modelling of complex wetting. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Thiele U, Snoeijer JH, Trinschek S, John K. Equilibrium Contact Angle and Adsorption Layer Properties with Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7210-7221. [PMID: 29758158 DOI: 10.1021/acs.langmuir.8b00513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The three-phase contact line of a droplet on a smooth surface can be characterized by the Young equation. It relates the interfacial energies to the macroscopic contact angle θe. On the mesoscale, wettability is modeled by a film-height-dependent wetting energy f( h). Macro- and mesoscale descriptions are consistent if γ cos θe = γ + f( ha), where γ and ha are the liquid-gas interface energy and the thickness of the equilibrium liquid adsorption layer, respectively. Here, we derive a similar consistency condition for the case of a liquid covered by an insoluble surfactant. At equilibrium, the surfactant is spatially inhomogeneously distributed, implying a nontrivial dependence of θe on surfactant concentration. We derive macroscopic and mesoscopic descriptions of a contact line at equilibrium and show that they are consistent only if a particular dependence of the wetting energy on the surfactant concentration is imposed. This is illustrated by a simple example of dilute surfactants, for which we show excellent agreement between theory and time-dependent numerical simulations.
Collapse
Affiliation(s)
| | - Jacco H Snoeijer
- Physics of Fluids Group and J. M. Burgers Centre for Fluid Dynamics , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Sarah Trinschek
- Université Grenoble-Alpes , CNRS, Laboratoire Interdisciplinaire de Physique , 38000 Grenoble , France
| | - Karin John
- Université Grenoble-Alpes , CNRS, Laboratoire Interdisciplinaire de Physique , 38000 Grenoble , France
| |
Collapse
|
16
|
Nold A, González MacDowell L, Sibley DN, Goddard BD, Kalliadasis S. The vicinity of an equilibrium three-phase contact line using density-functional theory: density profiles normal to the fluid interface. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1471223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Andreas Nold
- Theory of Neural Dynamics Group, Max-Planck-Insititute for Brain Research, Frankfurt am Main, Germany
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Luis González MacDowell
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - David N. Sibley
- Department of Mathematical Sciences, Loughborough University, Loughborough, UK
| | - Benjamin D. Goddard
- School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
17
|
Chalmers C, Smith R, Archer AJ. Dynamical Density Functional Theory for the Evaporation of Droplets of Nanoparticle Suspension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14490-14501. [PMID: 29155593 DOI: 10.1021/acs.langmuir.7b03096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We develop a lattice gas model for the drying of droplets of a nanoparticle suspension on a planar surface, using dynamical density functional theory (DDFT) to describe the time evolution of the solvent and nanoparticle density profiles. The DDFT assumes a diffusive dynamics but does not include the advective hydrodynamics of the solvent, so the model is relevant to highly viscous or near to equilibrium systems. Nonetheless, we see an equivalent of the coffee-ring stain effect, but in the present model it occurs for thermodynamic rather the fluid-mechanical reasons. The model incorporates the effect of phase separation and vertical density variations within the droplet and the consequence of these on the nanoparticle deposition pattern on the surface. We show how to include the effect of slip or no-slip at the surface and how this is related to the receding contact angle. We also determine how the equilibrium contact angle depends on the microscopic interaction parameters.
Collapse
Affiliation(s)
- C Chalmers
- Department of Mathematical Sciences, Loughborough University , Loughborough LE11 3TU, United Kingdom
| | - R Smith
- Department of Mathematical Sciences, Loughborough University , Loughborough LE11 3TU, United Kingdom
| | - A J Archer
- Department of Mathematical Sciences, Loughborough University , Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
18
|
Perazzo CA, Mac Intyre JR, Gomba JM. Analytical solutions for the profile of two-dimensional droplets with finite-length precursor films. Phys Rev E 2017; 96:063109. [PMID: 29347321 DOI: 10.1103/physreve.96.063109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 06/07/2023]
Abstract
By means of the lubrication approximation we obtain the full family of static bidimensional profiles of a liquid resting on a substrate under partial-wetting conditions imposed by a disjoining-conjoining pressure. We show that for a set of quite general disjoining-conjoining pressure potentials, the free surface can adopt only five nontrivial static patterns; in particular, we find solutions when the height goes to zero which describe satisfactorily the complete free surface for a finite amount of fluid deposited on a substrate. To test the extension of the applicability of our solutions, we compare them with those obtained when the lubrication approximations are not employed and under conditions where the lubrication hypothesis are not strictly valid, and also with axisymmetric solutions. For a given disjoining-conjoining potential, we report a new analytical solution that accounts for all the five possible solutions.
Collapse
Affiliation(s)
- Carlos Alberto Perazzo
- IMeTTyB, Universidad Favaloro-CONICET, Solís 453, C1078AAI Buenos Aires, Argentina
- Departamento de Física y Química, FICEN, Universidad Favaloro, Sarmiento 1853, C1044AAA Buenos Aires, Argentina
| | - J R Mac Intyre
- Instituto de Física Arroyo Seco IFAS (UNCPBA) and CIFICEN (UNCPBA-CICPBA-CONICET), Pinto 399, 7000, Tandil, Argentina
| | - J M Gomba
- Instituto de Física Arroyo Seco IFAS (UNCPBA) and CIFICEN (UNCPBA-CICPBA-CONICET), Pinto 399, 7000, Tandil, Argentina
| |
Collapse
|
19
|
Hu H, Chakraborty M, Allred TP, Weibel JA, Garimella SV. Multiscale Modeling of the Three-Dimensional Meniscus Shape of a Wetting Liquid Film on Micro-/Nanostructured Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12028-12037. [PMID: 28953405 DOI: 10.1021/acs.langmuir.7b02837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The design of structured surfaces for increasing the heat flux dissipated during boiling and evaporation processes via enhanced liquid rewetting requires prediction of the liquid meniscus shape on these surfaces. In this study, a general continuum model is developed to predict the three-dimensional meniscus shape of liquid films on micro/nanostructured surfaces based on a minimization of the system free energy that includes solid-liquid van der Waals interaction energy, surface energy, and gravitational potential. The continuum model is validated at the nanoscale against molecular dynamics simulations of water films on gold surfaces with pyramidal indentations, and against experimental measurements of water films on silicon V-groove channels at the microscale. The validated model is used to investigate the effect of film thickness and surface structure depth on the meniscus shape. The meniscus is shown to become more conformal with the surface structure as the film thickness decreases and the structure depth increases. Assuming small interface slope and small variation in film thickness, the continuum model can be linearized to obtain an explicit expression for the meniscus shape. The error of this linearized model is quantitatively assessed and shown to increase with increasing structure depth and decreasing structure pitch. The model developed can be used for accurate prediction of three-dimensional meniscus shape on structured surfaces with micro/nano-scale features, which is necessary for determining the liquid delivery rate and heat flux dissipated during thin-film evaporation. The linearized model is useful for rapid prediction of meniscus shape when the structure depth is smaller than or comparable to the liquid film thickness.
Collapse
Affiliation(s)
- Han Hu
- School of Mechanical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Monojit Chakraborty
- School of Mechanical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Taylor P Allred
- School of Mechanical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Justin A Weibel
- School of Mechanical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Suresh V Garimella
- School of Mechanical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Chalmers C, Smith R, Archer AJ. Modelling the evaporation of nanoparticle suspensions from heterogeneous surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:295102. [PMID: 28580906 DOI: 10.1088/1361-648x/aa76fd] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a Monte Carlo (MC) grid-based model for the drying of drops of a nanoparticle suspension upon a heterogeneous surface. The model consists of a generalised lattice-gas in which the interaction parameters in the Hamiltonian can be varied to model different properties of the materials involved. We show how to correctly choose the interactions, to minimise the effects of the underlying grid so that hemispherical droplets form. We also include the effects of surface roughness to examine the effects of contact-line pinning on the dynamics. When there is a 'lid' above the system, which prevents evaporation, equilibrium drops form on the surface, which we use to determine the contact angle and how it varies as the parameters of the model are changed. This enables us to relate the interaction parameters to the materials used in applications. The model has also been applied to drying on heterogeneous surfaces, in particular to the case where the suspension is deposited on a surface consisting of a pair of hydrophilic conducting metal surfaces that are either side of a band of hydrophobic insulating polymer. This situation occurs when using inkjet printing to manufacture electrical connections between the metallic parts of the surface. The process is not always without problems, since the liquid can dewet from the hydrophobic part of the surface, breaking the bridge before the drying process is complete. The MC model reproduces the observed dewetting, allowing the parameters to be varied so that the conditions for the best connection can be established. We show that if the hydrophobic portion of the surface is located at a step below the height of the neighbouring metal, the chance of dewetting of the liquid during the drying process is significantly reduced.
Collapse
Affiliation(s)
- C Chalmers
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | | | | |
Collapse
|
21
|
Buller O, Tewes W, Archer AJ, Heuer A, Thiele U, Gurevich SV. Nudged elastic band calculation of the binding potential for liquids at interfaces. J Chem Phys 2017; 147:024701. [PMID: 28711062 DOI: 10.1063/1.4990702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The wetting behavior of a liquid on solid substrates is governed by the nature of the effective interaction between the liquid-gas and the solid-liquid interfaces, which is described by the binding or wetting potential g(h) which is an excess free energy per unit area that depends on the liquid film height h. Given a microscopic theory for the liquid, to determine g(h), one must calculate the free energy for liquid films of any given value of h, i.e., one needs to create and analyze out-of-equilibrium states, since at equilibrium there is a unique value of h, specified by the temperature and chemical potential of the surrounding gas. Here we introduce a Nudged Elastic Band (NEB) approach to calculate g(h) and illustrate the method by applying it in conjunction with a microscopic lattice density functional theory for the liquid. We also show that the NEB results are identical to those obtained with an established method based on using a fictitious additional potential to stabilize the non-equilibrium states. The advantages of the NEB approach are discussed.
Collapse
Affiliation(s)
- Oleg Buller
- Institute for Physical Chemistry, University of Münster, Correnstr. 28/30, 48149 Münster, Germany
| | - Walter Tewes
- Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| | - Andrew J Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Andreas Heuer
- Institute for Physical Chemistry, University of Münster, Correnstr. 28/30, 48149 Münster, Germany
| | - Uwe Thiele
- Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| | - Svetlana V Gurevich
- Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| |
Collapse
|
22
|
Kanduč M, Netz RR. Atomistic simulations of wetting properties and water films on hydrophilic surfaces. J Chem Phys 2017; 146:164705. [DOI: 10.1063/1.4979847] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Matej Kanduč
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Roland R. Netz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
23
|
Tewes W, Buller O, Heuer A, Thiele U, Gurevich SV. Comparing kinetic Monte Carlo and thin-film modeling of transversal instabilities of ridges on patterned substrates. J Chem Phys 2017. [DOI: 10.1063/1.4977739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Walter Tewes
- Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| | - Oleg Buller
- Institute for Physical Chemistry, University of Münster, Correnstr. 28/30, 48149 Münster, Germany
| | - Andreas Heuer
- Institute for Physical Chemistry, University of Münster, Correnstr. 28/30, 48149 Münster, Germany
- Center of Nonlinear Science (CeNoS), University of Münster, Corrensstr. 2, 48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), University of Münster, Corrensstr. 40, 48149 Münster, Germany
| | - Uwe Thiele
- Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
- Center of Nonlinear Science (CeNoS), University of Münster, Corrensstr. 2, 48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), University of Münster, Corrensstr. 40, 48149 Münster, Germany
| | - Svetlana V. Gurevich
- Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
- Center of Nonlinear Science (CeNoS), University of Münster, Corrensstr. 2, 48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), University of Münster, Corrensstr. 40, 48149 Münster, Germany
| |
Collapse
|
24
|
Hughes AP, Thiele U, Archer AJ. Influence of the fluid structure on the binding potential: Comparing liquid drop profiles from density functional theory with results from mesoscopic theory. J Chem Phys 2017; 146:064705. [DOI: 10.1063/1.4974832] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
25
|
Yin H, Sibley DN, Thiele U, Archer AJ. Films, layers, and droplets: The effect of near-wall fluid structure on spreading dynamics. Phys Rev E 2017; 95:023104. [PMID: 28297907 DOI: 10.1103/physreve.95.023104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Indexed: 06/06/2023]
Abstract
We present a study of the spreading of liquid droplets on a solid substrate at very small scales. We focus on the regime where effective wetting energy (binding potential) and surface tension effects significantly influence steady and spreading droplets. In particular, we focus on strong packing and layering effects in the liquid near the substrate due to underlying density oscillations in the fluid caused by attractive substrate-liquid interactions. We show that such phenomena can be described by a thin-film (or long-wave or lubrication) model including an oscillatory Derjaguin (or disjoining or conjoining) pressure and explore the effects it has on steady droplet shapes and the spreading dynamics of droplets on both an adsorption (or precursor) layer and completely dry substrates. At the molecular scale, commonly used two-term binding potentials with a single preferred minimum controlling the adsorption layer height are inadequate to capture the rich behavior caused by the near-wall layered molecular packing. The adsorption layer is often submonolayer in thickness, i.e., the dynamics along the layer consists of single-particle hopping, leading to a diffusive dynamics, rather than the collective hydrodynamic motion implicit in standard thin-film models. We therefore modify the model in such a way that for thicker films the standard hydrodynamic theory is realized, but for very thin layers a diffusion equation is recovered.
Collapse
Affiliation(s)
- Hanyu Yin
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - David N Sibley
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm Klemm Str. 9, 48149 Münster, Germany
- Center of Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstr. 2, 48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität, Corrensstr. 40, 48149 Münster, Germany
| | - Andrew J Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
26
|
Belardinelli D, Sbragaglia M, Gross M, Andreotti B. Thermal fluctuations of an interface near a contact line. Phys Rev E 2016; 94:052803. [PMID: 27967049 DOI: 10.1103/physreve.94.052803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Indexed: 11/07/2022]
Abstract
The effect of thermal fluctuations near a contact line of a liquid interface partially wetting an impenetrable substrate is studied analytically and numerically. Promoting both the interface profile and the contact line position to random variables, we explore the equilibrium properties of the corresponding fluctuating contact line problem based on an interfacial Hamiltonian involving a "contact" binding potential. To facilitate an analytical treatment, we consider the case of a one-dimensional interface. The effective boundary condition at the contact line is determined by a dimensionless parameter that encodes the relative importance of thermal energy and substrate energy at the microscopic scale. We find that this parameter controls the transition from a partial wetting to a pseudopartial wetting state, the latter being characterized by a thin prewetting film of fixed thickness. In the partial wetting regime, instead, the profile typically approaches the substrate via an exponentially thinning prewetting film. We show that, independently of the physics at the microscopic scale, Young's angle is recovered sufficiently far from the substrate. The fluctuations of the interface and of the contact line give rise to an effective disjoining pressure, exponentially decreasing with height. Fluctuations therefore provide a regularization of the singular contact forces occurring in the corresponding deterministic problem.
Collapse
Affiliation(s)
- D Belardinelli
- Department of Physics & INFN, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - M Sbragaglia
- Department of Physics & INFN, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - M Gross
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - B Andreotti
- Physique et Mécanique des Milieux Hétérogènes, UMR 7636 ESPCI-CNRS, Université Paris-Diderot, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
27
|
Archer AJ, Malijevský A. Crystallization of soft matter under confinement at interfaces and in wedges. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:244017. [PMID: 27116476 DOI: 10.1088/0953-8984/28/24/244017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The surface freezing and surface melting transitions that are exhibited by a model two-dimensional soft matter system are studied. The behaviour when confined within a wedge is also considered. The system consists of particles interacting via a soft purely repulsive pair potential. Density functional theory (DFT) is used to calculate density profiles and thermodynamic quantities. The external potential due to the confining walls is modelled via a hard wall with an additional repulsive Yukawa potential. The surface phase behaviour depends on the range and strength of this repulsion: when the repulsion is weak, the wall promotes freezing at the surface of the wall. The thickness of this frozen layer grows logarithmically as the bulk liquid-solid phase coexistence is approached. Our mean-field DFT predicts that this crystalline layer at the wall must be nucleated (i.e. there is a free energy barrier) and its formation is necessarily a first-order transition, referred to as 'prefreezing', by analogy with the prewetting transition. However, in contrast to the latter, prefreezing cannot terminate in a critical point, since the phase transition involves a change in symmetry. If the wall-fluid interaction is sufficiently long ranged and the repulsion is strong enough, surface melting can occur instead. Then the interface between the wall and the bulk crystalline solid is wetted by the liquid phase as the chemical potential is decreased towards the value at liquid-solid coexistence. It is observed that the finite thickness fluid film at the wall has a broken translational symmetry due to its proximity to the bulk crystal, and so the nucleation of the wetting film can be either first order or continuous. Our mean-field theory predicts that for certain wall potentials there is a premelting critical point analogous to the surface critical point for the prewetting transition. When the fluid is confined within a linear wedge, this can strongly promote freezing when the opening angle of the wedge is commensurate with the crystal lattice.
Collapse
Affiliation(s)
- Andrew J Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | | |
Collapse
|
28
|
Zhang J, Borg MK, Sefiane K, Reese JM. Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052403. [PMID: 26651708 DOI: 10.1103/physreve.92.052403] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 06/05/2023]
Abstract
We employ molecular dynamics simulations to study the wetting and evaporation of salt-water nanodroplets on platinum surfaces. Our results show that the contact angle of the droplets increases with the salt concentration. To verify this, a second simulation system of a thin salt-water film on a platinum surface is used to calculate the various surface tensions. We find that both the solid-liquid and liquid-vapor surface tensions increase with salt concentration and as a result these cause an increase in the contact angle. However, the evaporation rate of salt-water droplets decreases as the salt concentration increases, due to the hydration of salt ions. When the water molecules have all evaporated from the droplet, two forms of salt crystals are deposited, clump and ringlike, depending on the solid-liquid interaction strength and the evaporation rate. To form salt crystals in a ring, it is crucial that there is a pinned stage in the evaporation process, during which salt ions can move from the center to the rim of the droplets. With a stronger solid-liquid interaction strength, a slower evaporation rate, and a higher salt concentration, a complete salt crystal ring can be deposited on the surface.
Collapse
Affiliation(s)
- Jun Zhang
- James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, United Kingdom
| | - Matthew K Borg
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, United Kingdom
| | - Khellil Sefiane
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, United Kingdom
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Jason M Reese
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, United Kingdom
| |
Collapse
|
29
|
Hughes AP, Thiele U, Archer AJ. Liquid drops on a surface: Using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling. J Chem Phys 2015; 142:074702. [DOI: 10.1063/1.4907732] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Adam P. Hughes
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Uwe Thiele
- Westfälische Wilhelms-Universität Münster, Institut für Theorestische Physik, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
- Center of Nonlinear Science (CeNoS), Westfälische Wilhelms Universität Münster, Corrensstr. 2, 48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), University of Münster, Corrensstr. 40, 48149 Münster, Germany
| | - Andrew J. Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
30
|
Dissipative Particle Dynamics: A Method to Simulate Soft Matter Systems in Equilibrium and Under Flow. SELECTED TOPICS OF COMPUTATIONAL AND EXPERIMENTAL FLUID MECHANICS 2015. [DOI: 10.1007/978-3-319-11487-3_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Tretyakov N, Müller M. Directed transport of polymer drops on vibrating superhydrophobic substrates: a molecular dynamics study. SOFT MATTER 2014; 10:4373-4386. [PMID: 24801832 DOI: 10.1039/c3sm53156b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Using molecular dynamics simulations of a coarse-grained polymer liquid we investigate the transport of droplets on asymmetrically structured (saw-tooth shaped), vibrating substrates. Due to a continuous supply of power by substrate vibrations and the asymmetry of its topography, the droplets are driven in a preferred direction. We study this directed motion as a function of the size of the droplets, the linear dimensions of the substrate corrugation, and the period of vibrations. Two mechanisms of driven transport are identified: (i) one that relies on the droplet's contact lines and (ii) in a range of vibration periods, the entire contact area contributes to the driving. In this latter regime, the set-up may be used in experiments for sorting droplets according to their size. Additionally, we show that the linear dimension of the substrate corrugation affects the flux inside the droplet. While on a substrate with a fine corrugation droplets mostly slide, on a more coarsely corrugated substrate the flux may exhibit an additional rotation pattern.
Collapse
Affiliation(s)
- Nikita Tretyakov
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
32
|
Müller EA, Jackson G. Force-Field Parameters from the SAFT-γ Equation of State for Use in Coarse-Grained Molecular Simulations. Annu Rev Chem Biomol Eng 2014; 5:405-27. [DOI: 10.1146/annurev-chembioeng-061312-103314] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A description of fluid systems with molecular-based algebraic equations of state (EoSs) and by direct molecular simulation is common practice in chemical engineering and the physical sciences, but the two approaches are rarely closely coupled. The key for an integrated representation is through a well-defined force field and Hamiltonian at the molecular level. In developing coarse-grained intermolecular potential functions for the fluid state, one typically starts with a detailed, bottom-up quantum-mechanical or atomic-level description and then integrates out the unwanted degrees of freedom using a variety of techniques; an iterative heuristic simulation procedure is then used to refine the parameters of the model. By contrast, with a top-down technique, one can use an accurate EoS to link the macroscopic properties of the fluid and the force-field parameters. We discuss the latest developments in a top-down representation of fluids, with a particular focus on a group-contribution formulation of the statistical associating fluid theory (SAFT-γ). The accurate SAFT-γ EoS is used to estimate the parameters of the Mie force field, which can then be used with confidence in direct molecular simulations to obtain thermodynamic, structural, interfacial, and dynamical properties that are otherwise inaccessible from the EoS. This is exemplified for several prototypical fluids and mixtures, including carbon dioxide, hydrocarbons, perfluorohydrocarbons, and aqueous surfactants.
Collapse
Affiliation(s)
- Erich A. Müller
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - George Jackson
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
33
|
MacDowell LG, Benet J, Katcho NA, Palanco JM. Disjoining pressure and the film-height-dependent surface tension of thin liquid films: new insight from capillary wave fluctuations. Adv Colloid Interface Sci 2014; 206:150-71. [PMID: 24351859 DOI: 10.1016/j.cis.2013.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
In this paper we review simulation and experimental studies of thermal capillary wave fluctuations as an ideal means for probing the underlying disjoining pressure and surface tensions, and more generally, fine details of the Interfacial Hamiltonian Model. We discuss recent simulation results that reveal a film-height-dependent surface tension not accounted for in the classical Interfacial Hamiltonian Model. We show how this observation may be explained bottom-up from sound principles of statistical thermodynamics and discuss some of its implications.
Collapse
|
34
|
Nguyen TD, Carrillo JMY, Matheson MA, Brown WM. Rupture mechanism of liquid crystal thin films realized by large-scale molecular simulations. NANOSCALE 2014; 6:3083-3096. [PMID: 24264516 DOI: 10.1039/c3nr05413f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented large-scale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top of thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. We further demonstrate that the primary driving force for rupture is closely related to the tendency of the LC mesogens to recover their local environment in the bulk state. Our study not only provides new insights into the rupture mechanism of liquid crystal films, but also sets the stage for future investigations of thin film systems using peta-scale molecular dynamics simulations.
Collapse
Affiliation(s)
- Trung Dac Nguyen
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | |
Collapse
|
35
|
Nguyen TD, Fuentes-Cabrera M, Fowlkes JD, Rack PD. Coexistence of spinodal instability and thermal nucleation in thin-film rupture: insights from molecular levels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032403. [PMID: 24730848 DOI: 10.1103/physreve.89.032403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Indexed: 06/03/2023]
Abstract
Despite extensive investigation using hydrodynamic models and experiments over the past decades, there remain open questions regarding the origin of the initial rupture of thin liquid films. One of the reasons that makes it difficult to identify the rupture origin is the coexistence of two dewetting mechanisms, namely, thermal nucleation and spinodal instability, as observed in many experimental studies. Using a coarse-grained model and large-scale molecular dynamics simulations, we are able to characterize the very early stage of dewetting in nanometer-thick liquid-metal films wetting a solid substrate. We observe the features characteristic of both spinodal instability and thermal nucleation in the spontaneously dewetting films and show that these two macroscopic mechanisms share a common origin at molecular levels.
Collapse
Affiliation(s)
- Trung Dac Nguyen
- National Center for Computational Sciences, Oak Ridge National Laboratory, Tennessee 37831
| | - Miguel Fuentes-Cabrera
- Center for Nanophase and Materials Science, Computer Science and Mathematics Division, Oak Ridge National Laboratory, Tennessee 37831 and Center for Nanophase and Materials Science, Oak Ridge National Laboratory, Tennessee 37831
| | - Jason D Fowlkes
- Center for Nanophase and Materials Science, Computer Science and Mathematics Division, Oak Ridge National Laboratory, Tennessee 37831
| | - Philip D Rack
- Center for Nanophase and Materials Science, Oak Ridge National Laboratory, Tennessee 37831 and Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
36
|
Dörfler F, Rauscher M, Dietrich S. Stability of thin liquid films and sessile droplets under confinement. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012402. [PMID: 23944464 DOI: 10.1103/physreve.88.012402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Indexed: 06/02/2023]
Abstract
The stability of nonvolatile thin liquid films and of sessile droplets is strongly affected by finite size effects. We analyze their stability within the framework of density functional theory using the sharp kink approximation, i.e., on the basis of an effective interface Hamiltonian. We show that finite size effects suppress spinodal dewetting of films because it is driven by a long-wavelength instability. Therefore nonvolatile films are stable if the substrate area is too small. Similarly, nonvolatile droplets connected to a wetting film become unstable if the substrate area is too large. This instability of a nonvolatile sessile droplet turns out to be equivalent to the instability of a volatile drop which can attain chemical equilibrium with its vapor.
Collapse
Affiliation(s)
- Fabian Dörfler
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | | | | |
Collapse
|