1
|
Shirota H, Yanase K, Ogura T, Sato T. Intermolecular Dynamics and Structure in Aqueous Lidocaine Hydrochloride Solutions. J Phys Chem B 2022; 126:1787-1798. [PMID: 35170970 DOI: 10.1021/acs.jpcb.1c10504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated the intermolecular dynamics and static structure in the aqueous solutions of lidocaine hydrochloride (LDHCl) in the concentration range of [LDHCl] = 0-2.00 M using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), small- and wide-angle X-ray scattering (SWAXS), and dynamic light scattering (DLS). For the fs-RIKES experiments, the concentration dependence of the difference low-frequency spectra of the aqueous LDHCl solutions relative to the neat water, which was mainly due to the intermolecular vibrations, was characterized using an exponential function with a characteristic concentration of ∼1 M. For the SWAXS experiments, we observed a manifestation of an excess scattering component centered within a range of 8-10 nm-1 in the aqueous LDHCl solutions. The results of Fourier inversion and further deconvolution analyses unambiguously demonstrated that lidocaines assemble into a nanometer-sized micelle-like structure with the innermost core (∼0.3 nm) and outer shell (∼0.5 nm), respectively. The DLS experiments also found nanometer-sized aggregates and further indicated evidence of the clusters of the aggregates. The results of viscosities, densities, and surface tensions of the solutions and the quantum chemistry calculations supported the unique features of the microscopic intermolecular interaction and the micelle-like aggregation.
Collapse
Affiliation(s)
- Hideaki Shirota
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Keiichi Yanase
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Taiki Ogura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Takaaki Sato
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
2
|
Cheng S, Musiał M, Wojnarowska Z, Holt A, Roland CM, Drockenmuller E, Paluch M. Structurally Related Scaling Behavior in Ionic Systems. J Phys Chem B 2020; 124:1240-1244. [PMID: 31999929 PMCID: PMC7497657 DOI: 10.1021/acs.jpcb.9b10783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/27/2020] [Indexed: 01/12/2023]
Abstract
We examine the density scaling properties of two ionic materials, a classic aprotic low molecular weight ionic liquid, 1-butyl-3-methylimidazolium bis(perfluoroethylsulfonyl)imide ([BMIm][BETI]), and a polymeric ionic liquid, poly(3-methyl-1,2,3-triazolium bis(trifluoromethylsulfonyl)imide) (TPIL). Density scaling is known to apply rigorously to simple liquids lacking specific intermolecular associations such as hydrogen bonds. Previous work has found that ionic liquids conform to density scaling over limited ranges of temperature and pressure. In this work, we find that the dc-conductivity of [BMIm][BETI] accurately scales for density changes of 17%; however, there is a departure from scaling for TPIL for even more modest variations of temperature and pressure. The entropy of both ionic samples conforms to density scaling only if the scaling exponent is allowed to vary linearly with the magnitude of the entropy.
Collapse
Affiliation(s)
- S. Cheng
- Institute
of Physics, University of Silesia in Katowice,
Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41−500 Chorzów, Poland
| | - M. Musiał
- Institute
of Physics, University of Silesia in Katowice,
Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41−500 Chorzów, Poland
| | - Z. Wojnarowska
- Institute
of Physics, University of Silesia in Katowice,
Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41−500 Chorzów, Poland
| | - A. Holt
- Naval
Research Laboratory, Chemistry Division, Washington, DC 20375-5342, United States
| | - C. M. Roland
- Naval
Research Laboratory, Chemistry Division, Washington, DC 20375-5342, United States
| | - E. Drockenmuller
- Univ
Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR
5223, F-69003, Lyon, France
| | - M. Paluch
- Institute
of Physics, University of Silesia in Katowice,
Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41−500 Chorzów, Poland
| |
Collapse
|
3
|
Hiraoka T, Ohtani R, Nakamura M, Lindoy LF, Hayami S. Water-Induced Breaking of the Coulombic Ordering in a Room-Temperature Ionic Liquid Metal Complex. Chemistry 2019; 25:7521-7525. [PMID: 30964217 DOI: 10.1002/chem.201900069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Indexed: 11/07/2022]
Abstract
Control of ion arrangements in ionic liquids represents a major challenge owing to the presence of the predominant coulombic interactions between cationic and anionic ion species that forms the coulombic ordering. Here, water-induced ion rearrangement in a room-temperature ionic liquid (RT-IL) metal complex, (1-ethyl-3-methylimidazolium)2 [MnN(CN)4 ], is demonstrated through coordinative interactions between anions. Solidification occurred, which was associated with the formation of a "separated" structure consisting of cation columns and anionic cyanide-bridged one-dimensional coordination polymers. The energy diagram is in accord with the resultant RT-IL incorporating mononuclear [MnN(CN)4 ]2- molecules being a kinetic phase stabilized by inter-ion repulsions of the anionic divalent metal complex moieties. Water acts to decrease the coulombic interactions, including repulsion, giving rise to breaking of the coulombic ordering arising from coordination bond formation in the IL phase.
Collapse
Affiliation(s)
- Tomoaki Hiraoka
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Ryo Ohtani
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Leonard F Lindoy
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
4
|
K P SH, Thayyil MS, Deshpande SK, T V J, K M, Ngai KL. Molecular dynamics and the translational-rotational coupling of an ionically conducting glass-former: amlodipine besylate. RSC Adv 2018; 8:20630-20636. [PMID: 35542326 PMCID: PMC9080837 DOI: 10.1039/c8ra01544a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/14/2018] [Indexed: 01/18/2023] Open
Abstract
We studied the conductivity relaxation originating from a glass-former composed of cations and anions, and the relation to the structural α-relaxation at temperatures above and below the glass transition temperature. The material chosen was amorphous amlodipine besylate (AMB), which is also a pharmaceutical with a complex chemical structure. Measurements were made using differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS) and X-ray diffraction, and the characterization was assisted using density functional theory (DFT). The X-ray diffraction pattern confirms the amorphous nature of vitrified AMB. Both the ionic and dipolar aspects of the dynamics of AMB were examined using these measurements and were used to probe the nature of the secondary conductivity and dipolar relaxations and their relation to the conductivity α-relaxation and the structural α-relaxation. The coupling model predictions and quantum mechanical simulations were used side by side to reveal the properties and nature of the secondary conductivity relaxation and the secondary dipolar relaxation. Remarkably, the two secondary relaxations have the same relaxation times, and are one and the same process performing dual roles in conductivity and dipolar relaxations. This is caused by the translation-rotation coupling of the AMB molecule. Thus, AMB has both conductivity α- and β-relaxations, and application of the coupling model shows that these two relaxations are related in the same way as the structural α-relaxation and the Johari-Goldstein β-relaxation are. This important result has an impact on the fundamental understanding of the dynamics of ionic conductivity.
Collapse
Affiliation(s)
- Safna Hussan K P
- Department of Physics, University of Calicut Malappuram-673635 Kerala India
| | | | - S K Deshpande
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC Mumbai 40085 India
| | - Jinitha T V
- Department of Chemistry, University of Calicut Malappuram-673635 Kerala India
| | - Manoj K
- College of Pharmaceutical Sciences, Govt. Medical College Kozhikode-673008 Kerala India
| | - K L Ngai
- CNR-IPCF Largo Bruno Pontecorvo 3 I-56127 Pisa Italy
| |
Collapse
|
5
|
Wojnarowska Z, Rams-Baron M, Knapik-Kowalczuk J, Połatyńska A, Pochylski M, Gapinski J, Patkowski A, Wlodarczyk P, Paluch M. Experimental evidence of high pressure decoupling between charge transport and structural dynamics in a protic ionic glass-former. Sci Rep 2017; 7:7084. [PMID: 28765639 PMCID: PMC5539233 DOI: 10.1038/s41598-017-07136-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/23/2017] [Indexed: 11/16/2022] Open
Abstract
In this paper the relaxation dynamics of ionic glass-former acebutolol hydrochloride (ACB-HCl) is studied as a function of temperature and pressure by using dynamic light scattering and broadband dielectric spectroscopy. These unique experimental data provide the first direct evidence that the decoupling between the charge transport and structural relaxation exists in proton conductors over a wide T-P thermodynamic space, with the time scale of structural relaxation being constant at the liquid-glass transition (τα = 1000 s). We demonstrate that the enhanced proton transport, being a combination of intermolecular H+ hopping between cation and anion as well as tautomerization process within amide moiety of ACB molecule, results in a breakdown of the Stokes-Einstein relation at ambient and elevated pressure with the fractional exponent k being pressure dependent. The dTg/dP coefficient, stretching exponent βKWW and dynamic modulus Ea/ΔV# were found to be the same regardless of the relaxation processes studied. This is in contrast to the apparent activation volume parameter that is different when charge transport and structural dynamics are considered. These experimental results together with theoretical considerations create new ideas to design efficient proton conductors for potential electrochemical applications.
Collapse
Affiliation(s)
- Z Wojnarowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007, Katowice, Poland. .,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500, Chorzow, Poland.
| | - M Rams-Baron
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007, Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500, Chorzow, Poland
| | - J Knapik-Kowalczuk
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007, Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500, Chorzow, Poland
| | - A Połatyńska
- Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland
| | - M Pochylski
- Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland
| | - J Gapinski
- Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland.,NanoBioMedical Centre, A. Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland
| | - A Patkowski
- Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland.,NanoBioMedical Centre, A. Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland
| | - P Wlodarczyk
- Institute of Non-Ferrous Metals, Sowinskiego 5, 44-100, Gliwice, Poland
| | - M Paluch
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007, Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500, Chorzow, Poland
| |
Collapse
|
6
|
Sippel P, Dietrich V, Reuter D, Aumüller M, Lunkenheimer P, Loidl A, Krohns S. Impact of water on the charge transport of a glass-forming ionic liquid. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.08.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Affiliation(s)
- Ananda S. Amarasekara
- Department of Chemistry, Prairie View A&M University, Prairie View, Texas 77446, United States
| |
Collapse
|
8
|
Rams-Baron M, Wojnarowska Z, Jedrzejowska A, Swiety-Pospiech A, Paluch M. The implications of various molecular interactions on the dielectric behavior of cimetidine and cimetidine hydrochloride. RSC Adv 2016. [DOI: 10.1039/c6ra17685b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We employed broadband dielectric spectroscopy to characterize the molecular dynamics of cimetidine base and cimetidine hydrochloride, materials with similar structural skeletons but involving different molecular interactions (ionic vs. non-ionic).
Collapse
Affiliation(s)
- M. Rams-Baron
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - Z. Wojnarowska
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - A. Jedrzejowska
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - A. Swiety-Pospiech
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - M. Paluch
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| |
Collapse
|
9
|
Greaves TL, Drummond CJ. Protic Ionic Liquids: Evolving Structure-Property Relationships and Expanding Applications. Chem Rev 2015; 115:11379-448. [PMID: 26426209 DOI: 10.1021/acs.chemrev.5b00158] [Citation(s) in RCA: 518] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tamar L Greaves
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University , GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Calum J Drummond
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University , GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
10
|
Veldhorst AA, Dyre JC, Schrøder TB. Scaling of the dynamics of flexible Lennard-Jones chains. J Chem Phys 2015; 141:054904. [PMID: 25106610 DOI: 10.1063/1.4888564] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The isomorph theory provides an explanation for the so-called power law density scaling which has been observed in many molecular and polymeric glass formers, both experimentally and in simulations. Power law density scaling (relaxation times and transport coefficients being functions of ρ(γ(S)), where ρ is density, T is temperature, and γ(S) is a material specific scaling exponent) is an approximation to a more general scaling predicted by the isomorph theory. Furthermore, the isomorph theory provides an explanation for Rosenfeld scaling (relaxation times and transport coefficients being functions of excess entropy) which has been observed in simulations of both molecular and polymeric systems. Doing molecular dynamics simulations of flexible Lennard-Jones chains (LJC) with rigid bonds, we here provide the first detailed test of the isomorph theory applied to flexible chain molecules. We confirm the existence of isomorphs, which are curves in the phase diagram along which the dynamics is invariant in the appropriate reduced units. This holds not only for the relaxation times but also for the full time dependence of the dynamics, including chain specific dynamics such as the end-to-end vector autocorrelation function and the relaxation of the Rouse modes. As predicted by the isomorph theory, jumps between different state points on the same isomorph happen instantaneously without any slow relaxation. Since the LJC is a simple coarse-grained model for alkanes and polymers, our results provide a possible explanation for why power-law density scaling is observed experimentally in alkanes and many polymeric systems. The theory provides an independent method of determining the scaling exponent, which is usually treated as an empirical scaling parameter.
Collapse
Affiliation(s)
- Arno A Veldhorst
- DNRF Centre "Glass and Time", IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- DNRF Centre "Glass and Time", IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Thomas B Schrøder
- DNRF Centre "Glass and Time", IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
11
|
Wojnarowska Z, Paluch M. Recent progress on dielectric properties of protic ionic liquids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:073202. [PMID: 25634823 DOI: 10.1088/0953-8984/27/7/073202] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protic ionic liquids (PILs) are key materials for a wide range of emerging technologies. In particular, these systems have long been envisioned as promising candidates for fuel cells. Therefore, in recent years special attention has been devoted to thorough studies of these compounds. Amongst others, dielectric properties of PILs at ambient and elevated pressure have become the subject of intense research. The reason for this lies in the role of broadband dielectric spectroscopy in recognizing the conductivity mechanism in protic ionic systems. In this paper, we summarize the dielectric results of various PILs reflecting recent advances in this field.
Collapse
Affiliation(s)
- Zaneta Wojnarowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | | |
Collapse
|
12
|
Wojnarowska Z, Paluch KJ, Shoifet E, Schick C, Tajber L, Knapik J, Wlodarczyk P, Grzybowska K, Hensel-Bielowka S, Verevkin SP, Paluch M. Molecular origin of enhanced proton conductivity in anhydrous ionic systems. J Am Chem Soc 2015; 137:1157-64. [PMID: 25558882 DOI: 10.1021/ja5103458] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ionic systems with enhanced proton conductivity are widely viewed as promising electrolytes in fuel cells and batteries. Nevertheless, a major challenge toward their commercial applications is determination of the factors controlling the fast proton hopping in anhydrous conditions. To address this issue, we have studied novel proton-conducting materials formed via a chemical reaction of lidocaine base with a series of acids characterized by a various number of proton-active sites. From ambient and high pressure experimental data, we have found that there are fundamental differences in the conducting properties of the examined salts. On the other hand, DFT calculations revealed that the internal proton hopping within the cation structure strongly affects the pathways of mobility of the charge carrier. These findings offer a fresh look on the Grotthuss-type mechanism in protic ionic glasses as well as provide new ideas for the design of anhydrous materials with exceptionally high proton conductivity.
Collapse
Affiliation(s)
- Zaneta Wojnarowska
- Institute of Physics, University of Silesia , Uniwersytecka 4, 40-007 Katowice, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wojnarowska Z, Ngai KL, Paluch M. Invariance of conductivity relaxation under pressure and temperature variations at constant conductivity relaxation time in 0.4Ca(NO₃)₂-0.6KNO₃. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062315. [PMID: 25615101 DOI: 10.1103/physreve.90.062315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Indexed: 06/04/2023]
Abstract
The article reports the dependence of the conductivity relaxation on temperature T and pressure P in the canonical ionic glass former 0.4Ca(NO(3))(2)-0.6KNO(3)(CKN). At constant conductivity relaxation time τ(σ), the entire conductivity relaxation spectra obtained at widely different combinations of T and P superpose almost perfectly, and thus it is the ion-ion interaction but not thermodynamics that determines the frequency dispersion. Moreover, on vitrifying CKN by either elevating P or decreasing T, changes of P or T dependence of τ(σ) at the glass transition pressure P(g) and temperature T(g) are observed to occur at the same value, i.e., τ(σ)(P(g))=τ(σ)(T(g)), indicating that the relation between τ(σ) and the structural relaxation time τ(α) is also independent of P and T.
Collapse
Affiliation(s)
- Z Wojnarowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland and Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - K L Ngai
- CNR-IPCF, Largo B. Pontecorvo 3, I-56127 Pisa, Italy and Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - M Paluch
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland and Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
14
|
Griffin PJ, Cosby T, Holt AP, Benson RS, Sangoro JR. Charge Transport and Structural Dynamics in Carboxylic-Acid-Based Deep Eutectic Mixtures. J Phys Chem B 2014; 118:9378-85. [DOI: 10.1021/jp503105g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Philip J. Griffin
- Department of Physics and Astronomy, ‡Department of Chemical and Biomolecular
Engineering, and §Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Tyler Cosby
- Department of Physics and Astronomy, ‡Department of Chemical and Biomolecular
Engineering, and §Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Adam P. Holt
- Department of Physics and Astronomy, ‡Department of Chemical and Biomolecular
Engineering, and §Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Roberto S. Benson
- Department of Physics and Astronomy, ‡Department of Chemical and Biomolecular
Engineering, and §Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Joshua R. Sangoro
- Department of Physics and Astronomy, ‡Department of Chemical and Biomolecular
Engineering, and §Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
15
|
Wojnarowska Z, Knapik J, Díaz M, Ortiz A, Ortiz I, Paluch M. Conductivity Mechanism in Polymerized Imidazolium-Based Protic Ionic Liquid [HSO3–BVIm][OTf]: Dielectric Relaxation Studies. Macromolecules 2014. [DOI: 10.1021/ma5003479] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Z. Wojnarowska
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- SMCEBI 75 Pułku Piechoty
1A, 41-500 Chorzow, Poland
| | - J. Knapik
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- SMCEBI 75 Pułku Piechoty
1A, 41-500 Chorzow, Poland
| | - M. Díaz
- Department
of Chemical and Biomolecular Engineering, University of Cantabria, Santander, Spain
| | - A. Ortiz
- Department
of Chemical and Biomolecular Engineering, University of Cantabria, Santander, Spain
| | - I. Ortiz
- Department
of Chemical and Biomolecular Engineering, University of Cantabria, Santander, Spain
| | - M. Paluch
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- SMCEBI 75 Pułku Piechoty
1A, 41-500 Chorzow, Poland
| |
Collapse
|
16
|
Wojnarowska Z, Ngai KL, Paluch M. Deducting the temperature dependence of the structural relaxation time in equilibrium far below the nominal Tg by aging the decoupled conductivity relaxation to equilibrium. J Chem Phys 2014; 140:174502. [DOI: 10.1063/1.4872260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
17
|
Wojnarowska Z, Wang Y, Paluch KJ, Sokolov AP, Paluch M. Observation of highly decoupled conductivity in protic ionic conductors. Phys Chem Chem Phys 2014; 16:9123-7. [DOI: 10.1039/c4cp00899e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Using dielectric spectroscopy, we report the observation of highly decoupled conductivity in a newly synthesized protic ionic conductor, lidocaine di-(dihydrogen phosphate).
Collapse
Affiliation(s)
- Zaneta Wojnarowska
- Institute of Physics
- University of Silesia
- 40-007 Katowice, Poland
- SMCEBI
- 41-500 Chorzów, Poland
| | - Yangyang Wang
- Chemical Sciences Division
- Oak Ridge National Laboratory
- Oak Ridge, USA
| | - Krzysztof J. Paluch
- School of Pharmacy and Pharmaceutical Sciences
- Trinity College Dublin
- Dublin 2, Ireland
| | - Alexei P. Sokolov
- Chemical Sciences Division
- Oak Ridge National Laboratory
- Oak Ridge, USA
- Department of Chemistry
- University of Tennessee
| | - Marian Paluch
- Institute of Physics
- University of Silesia
- 40-007 Katowice, Poland
- SMCEBI
- 41-500 Chorzów, Poland
| |
Collapse
|
18
|
Wojnarowska Z, Jarosz G, Grzybowski A, Pionteck J, Jacquemin J, Paluch M. On the scaling behavior of electric conductivity in [C4mim][NTf2]. Phys Chem Chem Phys 2014; 16:20444-50. [DOI: 10.1039/c4cp02253j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work we examine, for the first time, the molar conductivity behavior of the deeply supercooled room temperature ionic liquid [C4mim][NTf2] in the temperature, pressure and volume thermodynamic space in terms of density scaling regime (TVγ)−1 combined with the equation of state (EOS).
Collapse
Affiliation(s)
- Z. Wojnarowska
- Institute of Physics
- University of Silesia
- 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzów, Poland
| | - G. Jarosz
- Institute of Physics
- University of Silesia
- 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzów, Poland
| | - A. Grzybowski
- Institute of Physics
- University of Silesia
- 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzów, Poland
| | - J. Pionteck
- Leibniz Institute of Polymer Research Dresden
- D-01069 Dresden, Germany
| | - J. Jacquemin
- The School of Chemistry and Chemical Engineering/QUILL Research Centre
- Queen’s University of Belfast
- David Keir Building
- Belfast BT9 5AG, UK
| | - M. Paluch
- Institute of Physics
- University of Silesia
- 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzów, Poland
| |
Collapse
|
19
|
Wojnarowska Z, Wang Y, Pionteck J, Grzybowska K, Sokolov AP, Paluch M. High pressure as a key factor to identify the conductivity mechanism in protic ionic liquids. PHYSICAL REVIEW LETTERS 2013; 111:225703. [PMID: 24329456 DOI: 10.1103/physrevlett.111.225703] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 08/30/2013] [Indexed: 06/03/2023]
Abstract
In this Letter we report the relation between ionic conductivity and structural relaxation in supercooled protic ionic liquids (PILs) under high pressure. The results of high-pressure dielectric and volumetric measurements, combined with rheological and temperature-modulated differential scanning calorimetry experiments, have revealed a fundamental difference between the conducting properties under isothermal and isobaric conditions for three PILs with different charge transport mechanisms (Grotthuss vs vehicle). Our findings indicate a breakdown of the fractional Stokes-Einstein relation and Walden rule when the ionic transport is controlled by fast proton hopping. Consequently, we demonstrate that the studied PILs exhibit significantly higher conductivity than one would expect taking into account that they are in fact a mixture of ionic and neutral species. Thus, the examined herein samples represent a new class of "superionic" materials desired for many advanced applications.
Collapse
Affiliation(s)
- Z Wojnarowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - Y Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - J Pionteck
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - K Grzybowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - A P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA
| | - M Paluch
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| |
Collapse
|