1
|
Liu K. Odyssey in the Wonderland of Chemical Dynamics. Annu Rev Phys Chem 2025; 76:1-17. [PMID: 39841929 DOI: 10.1146/annurev-physchem-082423-035645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
This is a recollection of my scientific trajectory. When I look back, I consider myself to be very fortunate for being able to do something I love and on topics of my own will. I am not a competitive person and tend to shy away from the limelight. Nonetheless, I survived in my profession and eventually made some modest contributions, which are beyond what I would have expected. We often forget about the human aspect of scientific endeavor. After all, science is done by individuals; humans have emotions and make mistakes. The frustrations of failures, the joys of finding problems and solutions to them, and the passion for fulfilling curiosity are all parts of this endeavor. Throughout the years, many people-mentors, students, postdocs, collaborators, and colleagues-have accompanied me in this exciting and fruitful journey, for which I am deeply grateful and feel very lucky to have them.
Collapse
Affiliation(s)
- Kopin Liu
- 1Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan;
- 2Aerosol Sciences Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan
- 3State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| |
Collapse
|
2
|
Sokolovski D, De Fazio D, Akhmatskaya E. A Transition State Resonance Radically Reshapes Angular Distributions of the F + H 2 → FH( v f = 3) + H Reaction in the 62-102 meV Energy Range. ACS PHYSICAL CHEMISTRY AU 2025; 5:219-226. [PMID: 40160944 PMCID: PMC11950844 DOI: 10.1021/acsphyschemau.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 04/02/2025]
Abstract
Reactive angular distributions of the benchmark F + H 2(v i = 0) → FH(v f = 3) + H reaction show unusual propensity toward small scattering angles, a subject of a long debate in the literature. We use Regge trajectories to quantify the resonance contributions to state-to-state differential cross sections. Conversion to complex energy poles allows us to attribute the effect almost exclusively to a transition state resonance, long known to exist in the F + H 2 system and its isotopic variant F + HD. For our detailed analysis of angular scattering we employ the package DCS_Regge, recently developed for the purpose [Akhmatskaya E.; Sokolovski D.Comput. Phys. Commun.2022, 277, 108370].
Collapse
Affiliation(s)
- Dmitri Sokolovski
- Departmento
de Química-Física Química-Física, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- EHU
Quantum Center, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
| | - Dario De Fazio
- Istituto
di Struttura della Materia-Consiglio Nazionale delle Ricerche, 00016 Roma, Italy
| | - Elena Akhmatskaya
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Basque
Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, 48009 Bilbao, Spain
| |
Collapse
|
3
|
Sáez-Rábanos V, Sáez-Cano G, Verdasco JE, Aoiz FJ, Herrero VJ. The F + HD ( v = 0, 1; j = 1) reaction: angular momentum correlations in the low (<1 meV) collision energy regime. Phys Chem Chem Phys 2024; 27:376-387. [PMID: 39641746 DOI: 10.1039/d4cp02866j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
A detailed analysis of the low collision energy (0.03-10 meV) integral reaction cross-section has been carried out for the F + HD (v = 0, 1; j = 1)→ HF(DF) + D(H) reaction using accurate, fully converged time-independent hyperspherical quantum dynamics. Particular attention has been paid to the shape (orbiting) resonances and their assignment to the orbital (L) and total (J) angular momenta as well as to the product's state resolved cross-sections at the energies of the resonances. As in previous works, it has been found that the energy position of the resonances depends on the initial state, but is essentially the same for the two exit channels and the product's rovibrational states. The analysis in terms of the orbital and total angular momenta showed that each resonance is characterised by a given value of L but is contributed by several J. The main resonances are due to L = 3 and L = 5 for both F + HD (v = 0, j = 1) and F + HD (v = 1, j = 1) reactions, although they appear at different collision energies. The product's vibrationally resolved excitation functions are found to follow the same pattern as the integral cross-section summed over all final states. A more detailed analysis has been made for the rotationally resolved integral cross-sections associated with L = 3, which gives rise to the main resonance for the two reactions and both product channels, for different final j' states, showing similar behaviour for all j' states except for j' = 0 due to parity conservation. The joint analysis of the final rotational and orbital angular momenta shows that L' and j' tend to have an antiparallel orientation.
Collapse
Affiliation(s)
- V Sáez-Rábanos
- Departamento de Sistemas y Recursos Naturales, E.T.S. Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - G Sáez-Cano
- Departamento Física y Matemáticas, Universidad de Alcalá de Henares, 28805 Alcalá de Henares, Spain.
| | - J E Verdasco
- Departamento de Química Física, Facultad de Química, Universidad Complutense de Madrid (Unidad Asociada CSIC), 28040 Madrid, Spain.
| | - F J Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense de Madrid (Unidad Asociada CSIC), 28040 Madrid, Spain.
| | - V J Herrero
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, 28006 Madrid, Spain.
| |
Collapse
|
4
|
Liu S, Chen J, Zhang X, Zhang DH. Feshbach resonances in the F + CHD 3 → HF + CD 3 reaction. Chem Sci 2023; 14:7973-7979. [PMID: 37502322 PMCID: PMC10370578 DOI: 10.1039/d3sc02629a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
The signature of dynamics resonances was observed in the benchmark polyatomic F + CH4/CHD3 reactions more than a decade ago; however, the dynamical origin of the resonances is still not clear due to the lack of reliable quantum dynamics studies on accurate potential energy surfaces. Here, we report a six-dimensional state-to-state quantum dynamics study on the F + CHD3 → HF + CD3 reaction on a highly accurate potential energy surface. Pronounced oscillatory structures are observed in the total and product rovibrational-state-resolved reaction probabilities. Detailed analysis reveals that these oscillating features originate from the Feshbach resonance states trapped in the peculiar well on the HF(v' = 3)-CD3 vibrationally adiabatic potential caused by HF chemical bond softening. Most of the resonance structures on the reaction probabilities are washed out in the well converged integral cross sections (ICS), leaving only one distinct peak at low collision energy. The calculated HF vibrational state-resolved ICS for CD3(v = 0) agrees quantitatively with the experimental results, especially the branching ratio, but the theoretical CD3 umbrella vibration state distribution is found to be much hotter than the experiment.
Collapse
Affiliation(s)
- Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jun Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xiaoren Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
5
|
Naskar K, Ghosh S, Adhikari S. Accurate Calculation of Rate Constant and Isotope Effect for the F + H 2 Reaction by the Coupled 3D Time-Dependent Wave Packet Method on the Newly Constructed Ab Initio Ground Potential Energy Surface. J Phys Chem A 2022; 126:3311-3328. [PMID: 35594416 DOI: 10.1021/acs.jpca.2c01209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ coupled three-dimensional (3D) time dependent wave packet formalism in hyperspherical coordinates for reactive scattering problem on the newly constructed ab initio calculated ground adiabatic potential energy surface for the F + H2/D2 reaction. The convergence profiles for various reactive channels are depicted at low collision energy regimes with respect to the total angular momentum (J) quantum numbers. For two different reactant diatomic molecules (H2 and D2) initially at their respective ground roto-vibrational state (v = 0, j = 0), calculated state-to-state as well as total integral cross sections as a function of collision energy, temperature dependent rate constants, and the kinetic isotope effect for various reactivity profiles of F + H2 and F + D2 reactions are presented along with previous theoretical and experimental results.
Collapse
Affiliation(s)
- Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata West Bengal-741246, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| |
Collapse
|
6
|
Xu X, Chen J, Lu X, Fang W, Liu S, Zhang DH. Strong non-Arrhenius behavior at low temperatures in the OH + HCl → H 2O + Cl reaction due to resonance induced quantum tunneling. Chem Sci 2022; 13:7955-7961. [PMID: 35865883 PMCID: PMC9258319 DOI: 10.1039/d2sc01958b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022] Open
Abstract
The OH + HCl reaction possesses many Feshbach resonances trapped in the hydrogen bond well in the entrance channel, which substantially enhance the reaction rates at low temperatures.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Jun Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Xiaoxiao Lu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Wei Fang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| |
Collapse
|
7
|
Sáez-Rábanos V, Verdasco JE, Aoiz FJ, Herrero VJ. The F + HD(v = 0, 1; j = 0, 1) reactions: stereodynamical properties of orbiting resonances. Phys Chem Chem Phys 2021; 23:8002-8012. [PMID: 33480905 DOI: 10.1039/d0cp05425a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excitation functions (reaction cross-section as a function of collision energy) of the F + HD(v = 0, 1; j = 0, 1) benchmark system have been calculated in the 0.01-6 meV collision energy interval using a time-independent hyperspherical quantum dynamics methodology. Special attention has been paid to orbiting resonances, which bring about detailed information on the three-atom interaction during the reactive encounter. The location of the resonances depends on the rovibrational state of the reactants HD(v,j), but is the same for the two product channels HF + D and DF + H, as expected for these resonances that are linked to the van der Waals well at the entrance. The resonance intensities depend both on the entrance and on the exit channels. The peak intensities for the HF + D channel are systematically larger than those for DF + H. Vibrational excitation leads to an increase of the peak intensity by more than an order of magnitude, but rotational excitation has a less drastic effect. It deceases the resonance intensity of the F + HD(v = 1) reaction, but increases somewhat that of F + HD(v = 0). Polarization of the rotational angular momentum with respect to the initial velocity reveals intrinsic directional preferences in the F + HD(v = 0, 1; j = 1) reactions that are manifested in the resonance patterns. The helicities (Ω = 0, Ω = ±1) possible for j = 1 contribute to the resonances, but that from Ω± 1 is, in general, dominant and in some cases exclusive. It corresponds to a preferential alignment of the HD internuclear axis perpendicular to the initial direction of approach and, thus, to side-on collisions. This work also shows that external preparation of the reactants, following the intrinsic preferences, would allow the enhancement or reduction of specific resonance features, and would be of great help for their eventual experimental detection.
Collapse
Affiliation(s)
- V Sáez-Rábanos
- Departamento de Sistemas y Recursos Naturales, E.T.S. de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | | | | | | |
Collapse
|
8
|
Paliwal P, Deb N, Reich DM, Avoird AVD, Koch CP, Narevicius E. Determining the nature of quantum resonances by probing elastic and reactive scattering in cold collisions. Nat Chem 2021; 13:94-98. [PMID: 33257885 DOI: 10.1038/s41557-020-00578-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/14/2020] [Indexed: 11/09/2022]
Abstract
Scattering resonances play a central role in collision processes in physics and chemistry. They help build an intuitive understanding of the collision dynamics due to the spatial localization of the scattering wavefunctions. For resonances that are localized in the reaction region, located at short separation behind the centrifugal barrier, sharp peaks in the reaction rates are the characteristic signature, observed recently with state-of-the-art experiments in low-energy collisions. If, however, the localization occurs outside of the reaction region, mostly the elastic scattering is modified. This may occur due to above-barrier resonances, the quantum analogue of classical orbiting. By probing both elastic and inelastic scattering of metastable helium with deuterium molecules in merged-beam experiments, we differentiate between the nature of quantum resonances-tunnelling resonances versus above-barrier resonances-and corroborate our findings by calculating the corresponding scattering wavefunctions.
Collapse
Affiliation(s)
- Prerna Paliwal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Nabanita Deb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel M Reich
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
| | - Ad van der Avoird
- Institute of Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Christiane P Koch
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Berlin, Germany.
| | - Edvardas Narevicius
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Dutta J, Mukherjee S, Naskar K, Ghosh S, Mukherjee B, Ravi S, Adhikari S. The role of electron-nuclear coupling on multi-state photoelectron spectra, scattering processes and phase transitions. Phys Chem Chem Phys 2020; 22:27496-27524. [PMID: 33283826 DOI: 10.1039/d0cp04052e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present first principle based beyond Born-Oppenheimer (BBO) theory and its applications on various models as well as realistic spectroscopic and scattering processes, where the Jahn-Teller (JT) theory is brought in conjunction with the BBO approach on the phase transition of lanthanide complexes. Over one and half decades, our development of BBO theory is demonstrated with ab initio calculations on representative molecules of spectroscopic interest (NO2 radical, Na3 and K3 clusters, NO3 radical, C6H6+ and 1,3,5-C6H3F3+ radical cations) as well as triatomic reactive scattering processes (H+ + H2 and F + H2). Such an approach exhibits the effect of JT, Renner-Teller (RT) and pseudo Jahn-Teller (PJT) type of interactions. While implementing the BBO theory, we generate highly accurate diabatic potential energy surfaces (PESs) to carry out quantum dynamics calculation and find excellent agreement with experimental photoelectron spectra of spectroscopic systems and cross-sections/rate constants of scattering processes. On the other hand, such electron-nuclear couplings incorporated through JT theory play a crucial role in dictating higher energy satellite transitions in the dielectric function spectra of the LaMnO3 complex. Overall, this article thoroughly sketches the current perspective of the BBO approach and its connection with JT theory with various applications on physical and chemical processes.
Collapse
Affiliation(s)
- Joy Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | | | | | | | | | | | | |
Collapse
|
10
|
Mukherjee B, Naskar K, Mukherjee S, Ravi S, Shamasundar KR, Mukhopadhyay D, Adhikari S. Beyond Born-Oppenheimer constructed diabatic potential energy surfaces for F + H 2 reaction. J Chem Phys 2020; 153:174301. [PMID: 33167635 DOI: 10.1063/5.0021885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
First principles based beyond Born-Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin-orbit (SO) coupling effect on the collision process of the F + H2 reaction has been included as a perturbation to the non-relativistic electronic Hamiltonian. Adiabatic PESs and NACTs for the lowest three electronic states (12A', 22A', and 12A″) are determined in hyperspherical coordinates as functions of hyperangles for a grid of fixed values of the hyperradius. Jahn-Teller (JT) type conical intersections between the two A' states translate along C2v and linear geometries in F + H2. In addition, A' and A″ states undergo Renner-Teller (RT) interaction at collinear configurations of this system. Both JT and RT couplings are validated by integrating NACTs along properly chosen contours. Subsequently, we have solved adiabatic-to-diabatic transformation (ADT) equations to evaluate the ADT angles for constructing the diabatic potential matrix of F + H2, including the SO coupling terms. The newly calculated diabatic PESs are found to be smooth, single-valued, continuous, and symmetric and can be invoked for performing accurate scattering calculations on the F + H2 system.
Collapse
Affiliation(s)
- Bijit Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Satyam Ravi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - K R Shamasundar
- Department of Chemical Science, Indian Institute of Science Education and Research, Mohali, India
| | | | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
11
|
Abstract
Scattering resonance is a fascinating phenomenon which manifests as a peak or a dip in an observable as a function of collisional energy (Ec). Its occurrence requires a potential well to support the resonance states. In this regard, reactive resonance is unusual in that it can exist in a reaction with unbound Born-Oppenheimer potential energy surface, on which the quasi-bound states are dynamically trapped-meaning that some energy is temporarily tied to the other degrees of freedom than the reaction coordinate. The concept of vibrational adiabaticity has been the cornerstone in understanding this phenomenon, for which the vibrationally adiabatic well depth is of primary concern. Recent studies on the F + CH3D reaction have accumulated compelling evidence for a dominant resonance-mediated pathway at low Ec as well as for a rainbow feature in pair-correlated angular distribution at higher Ec. Here, we report an in-depth study to not only substantiate both claims but also, more importantly, make the first attempt to quantify the vibrationally adiabatic well depth directly from the observed rainbow structure and then compare with the theoretical prediction.
Collapse
Affiliation(s)
- Huilin Pan
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
- Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, P. R. China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, P. R. China
| | - Kopin Liu
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, P. R. China
- Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
12
|
Papp D, Czakó G. Full-dimensional MRCI-F12 potential energy surface and dynamics of the F(2P3/2) + C2H6 → HF + C2H5 reaction. J Chem Phys 2020; 153:064305. [DOI: 10.1063/5.0018894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H 6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H 6720, Hungary
| |
Collapse
|
13
|
Buren B, Yang Z, Chen M. Dynamics study on the non-adiabatic Na(3p) + HD → NaH/NaD + D/H reaction: insertion-abstraction mechanism. Phys Chem Chem Phys 2020; 22:3633-3642. [PMID: 31998904 DOI: 10.1039/c9cp06026j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-dependent wave packet calculations are carried out for two reaction channels of the non-adiabatic Na(3p) + HD → NaH/NaD + D/H reaction. The potential well on the excited state potential energy surface makes the reaction preferable to proceed through the insertion reaction path. The dominance of the NaD + H reaction channel and product rotational state distributions are found to be in agreement with the characteristics of typical adiabatic insertion reactions. However, significant forward scattering peaks in the differential cross sections (DCS) are found to be inconsistent with the forward-backward symmetric scattering characteristic of typical adiabatic insertion reactions, which indicate that the Na(3p) + HD reaction is dominated by a direct reaction mechanism. The comparison between adiabatic and non-adiabatic calculated DCSs reveals that the non-adiabatic couplings in the reaction could reduce the lifetime of the intermediate complex. Finally, the insertion-abstraction mechanism is put forward for the non-adiabatic Na(3p) + HD reaction.
Collapse
Affiliation(s)
- Bayaer Buren
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Zijiang Yang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
14
|
De Fazio D, Aquilanti V, Cavalli S. Benchmark Quantum Kinetics at Low Temperatures toward Absolute Zero and Role of Entrance Channel Wells on Tunneling, Virtual States, and Resonances: The F + HD Reaction. J Phys Chem A 2020; 124:12-20. [PMID: 31829589 DOI: 10.1021/acs.jpca.9b08435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper reports a study of the quantum reaction dynamics and kinetics of the F + HD reaction at low and ultralow temperatures, focusing on the range from the Wigner limit up to 50 K. Close coupling time-independent quantum reactive scattering calculations for the production of HF and DF molecules have been carried out on two potential energy surfaces differing in the description of the reaction entrance channel. This case is computationally more demanding than the cases of F with H2 and D2 ( De Fazio et al. Frontiers in Chemistry 2019 , 7 , 328 ) but offers a wider phenomenology regarding the roles of quantum mechanical effects of tunneling, of virtual states, and of resonances. The results show that at the temperatures in the cold and ultracold regimes small changes in the entrance channel long-range interaction induce surprising near threshold features. The presence of a virtual state close to the reactive threshold gives rise to a marked anti-Arrhenius behavior of the rate constants below 100 mK. This effect enhances reaction rates by about 2 orders of magnitude, making them of the same order as those at room temperature and confining the onset of the Wigner regime in the microkelvin region.
Collapse
Affiliation(s)
- Dario De Fazio
- Istituto di Struttura della materia-Consiglio Nazionale delle Ricerche , 00016 Roma , Italy
| | - Vincenzo Aquilanti
- Istituto di Struttura della materia-Consiglio Nazionale delle Ricerche , 00016 Roma , Italy.,Dipartimento di Chimica, Biologia e Biotecnologie , Università di Perugia , 06123 Perugia , Italy
| | - Simonetta Cavalli
- Dipartimento di Chimica, Biologia e Biotecnologie , Università di Perugia , 06123 Perugia , Italy
| |
Collapse
|
15
|
Sáez-Rábanos V, Verdasco JE, Herrero VJ. Orbiting resonances in the F + HD (v = 0, 1) reaction at very low collision energies. A quantum dynamical study. Phys Chem Chem Phys 2019; 21:15177-15186. [PMID: 31246200 PMCID: PMC6751073 DOI: 10.1039/c9cp02718a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-independent, fully converged, quantum dynamical calculations have been performed for the F + HD (v = 0, j = 0) and F + HD (v = 1, j = 0) reactions on an accurate potential energy surface down to collision energies of 0.01 meV. The two isotopic exit channels, HF + D and DF + H, have been investigated. The calculations reproduce satisfactorily the Feshbach resonance structures for collision energies between 10 and 40 meV, previously reported in the literature for the HF + D channel. Contrary to the results of a former literature work, vibrational excitation of HD is found to enhance reactivity in all cases down to the lowest collision energy investigated. Shape-type orbiting resonances are found for collision energies lower than 2 meV. The resonances appear as peaks in the reaction cross sections that are associated to specific values of the total angular momentum, J. In contrast with the Feshbach resonances at higher energies, the orbiting resonance structure, which is caused by the van der Waals well of the entrance channel, is identical for the HF + D and DF + H exit channels. The orbiting resonance peaks for F + HD (v = 0) are very small, but those for F + HD (v = 1) could be observed, in principle, with a combination of Raman pumping and merged beams methods.
Collapse
Affiliation(s)
- V Sáez-Rábanos
- Departamento de Sistemas y Recursos Naturales, E.T.S. de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - J E Verdasco
- Departamento de Química Física, Facultad de Química, Universidad Complutense de Madrid (Unidad Asociada CSIC), 28040 Madrid, Spain.
| | - V J Herrero
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, 28006 Madrid, Spain.
| |
Collapse
|
16
|
Yang CH, Hu LL, Liu K. Imaging pair-correlated reaction cross sections in F + CH 3D(ν b = 0, 1) → CH 2D(ν 4 = 1) + HF(ν). Phys Chem Chem Phys 2019; 21:13934-13942. [PMID: 29989118 DOI: 10.1039/c8cp03443e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The title reactions were studied in a crossed-beam experiment at collisional energies (Ec) from 0.5 to 4.7 kcal mol-1. The νb (ν4) vibrational mode denotes the bending (umbrella) motion of the CH3D reactant (CH2D product). Using a time-sliced, velocity-map imaging technique, we extracted the state-specific, pair-correlated integral and differential cross sections. As with other isotopically analogous ground-state reactions, an inverted vibrational population of the HF coproduct was observed. Both the step-like excitation function near the threshold and the oscillatory forward-backward peakings in the Ec-evolution of the two dominant pair-correlated angular distributions at lower Ec suggest a resonance-mediated, time-delay mechanism. As Ec increases, the angular distribution of the HF(ν = 2) product evolves into a smooth and broad swath in the backward hemisphere, indicative of a direct rebound mechanism. One quantum excitation of the bending modes of CH3D(νb = 1) promotes the reaction rate by two- to three-fold up to Ec = 2.1 kcal mol-1. Broadly speaking, all major findings are qualitatively in line with previous results in the reactions of the F atom with other isotopologues. However, the rainbow feature recently observed in the CH2D(00) + HF(ν = 3) product channel is entirely absent. A possible rationale is put forward, which reinforces the previous reactive rainbow conjecture and calls for future theoretical investigations.
Collapse
Affiliation(s)
- Chung-Hsin Yang
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, 10617, Taiwan.
| | | | | |
Collapse
|
17
|
Bhattacharyya S, Mondal S, Liu K. Imaging a Resonance-Dominant Polyatomic Reaction: F + CH 3D → CH 3(ν 2 = 2) + DF(ν). J Phys Chem Lett 2018; 9:5502-5507. [PMID: 30188130 DOI: 10.1021/acs.jpclett.8b02517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The title reaction was studied in a crossed-beam scattering experiment at the collisional energy ( Ec) ranging from 0.46 to 4.53 kcal mol-1. Using a time-sliced velocity-imaging technique, both the pair-correlated integral and differential cross sections were measured. On the basis of the observed structures in state-specific excitation functions and the patterns in the Ec evolution of product angular distributions, we inferred that the title reaction proceeds predominantly via a resonance-mediated pathway, in contrast to the previous findings in the isotopically analogous reactions where the alternative direct abstraction pathway often dominates the reactivity. Despite the complexity of numerous scattering resonances involved in this six-atom reaction, extending our understanding of the isolated resonance in the analogous benchmark F + HD (H2) reaction enables us to propose plausible mechanistic origins for the formation as well as the decay of the complicated overlapped resonances.
Collapse
Affiliation(s)
- Surjendu Bhattacharyya
- Institute of Atomic and Molecular Sciences (IAMS) , Academia Sinica , P.O. Box 23-166, Taipei , 10617 , Taiwan
| | - Sohidul Mondal
- Institute of Atomic and Molecular Sciences (IAMS) , Academia Sinica , P.O. Box 23-166, Taipei , 10617 , Taiwan
| | - Kopin Liu
- Institute of Atomic and Molecular Sciences (IAMS) , Academia Sinica , P.O. Box 23-166, Taipei , 10617 , Taiwan
- Department of Physics , National Taiwan University , Taipei , 10617 , Taiwan
| |
Collapse
|
18
|
Li X, Sun Z. Dynamical resonances in
$$\hbox {F}+ {\hbox {H}}_2/\hbox {HD}$$
F
+
H
2
/
HD
reaction scattering. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Abstract
Slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled anions (cryo-SEVI) is a powerful technique for elucidating the vibrational and electronic structure of neutral radicals, clusters, and reaction transition states. SEVI is a high-resolution variant of anion photoelectron spectroscopy based on photoelectron imaging that yields spectra with energy resolution as high as 1-2 cm-1. The preparation of cryogenically cold anions largely eliminates hot bands and dramatically narrows the rotational envelopes of spectral features, enabling the acquisition of well-resolved photoelectron spectra for complex and spectroscopically challenging species. We review the basis and history of the SEVI method, including recent experimental developments that have improved its resolution and versatility. We then survey recent SEVI studies to demonstrate the utility of this technique in the spectroscopy of aromatic radicals, metal and metal oxide clusters, nonadiabatic interactions between excited states of small molecules, and transition states of benchmark bimolecular reactions.
Collapse
Affiliation(s)
- Marissa L Weichman
- Department of Chemistry, University of California, Berkeley, California 94720, USA; , .,Current affiliation: JILA, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA; , .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
20
|
Clary DC. Spiers Memorial Lecture : Introductory lecture: quantum dynamics of chemical reactions. Faraday Discuss 2018; 212:9-32. [DOI: 10.1039/c8fd00131f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Spiers Memorial Lecture discusses quantum effects that can be calculated and observed in the chemical reactions of small molecules.
Collapse
Affiliation(s)
- David C. Clary
- Physical and Theoretical Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| |
Collapse
|
21
|
Shan X, Xiahou C, Connor JNL. Rainbows, supernumerary rainbows and interference effects in the angular scattering of chemical reactions: an investigation using Heisenberg's S matrix programme. Phys Chem Chem Phys 2018; 20:819-836. [DOI: 10.1039/c7cp06654f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rainbow and supernumerary rainbow in the angular scattering of a state-to-state chemical reaction.
Collapse
Affiliation(s)
- Xiao Shan
- School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Chengkui Xiahou
- School of Pharmacy
- Qilu Medical University
- Zibo 255213
- People's Republic of China
| | - J. N. L. Connor
- School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| |
Collapse
|
22
|
Wang T, Yang T, Xiao C, Sun Z, Zhang D, Yang X, Weichman ML, Neumark DM. Dynamical resonances in chemical reactions. Chem Soc Rev 2018; 47:6744-6763. [DOI: 10.1039/c8cs00041g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transition state is a key concept in the field of chemistry and is important in the study of chemical kinetics and reaction dynamics.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Tiangang Yang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Donghui Zhang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | | | - Daniel M. Neumark
- Department of Chemistry
- University of California at Berkeley
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
23
|
Weichman ML, DeVine JA, Babin MC, Li J, Guo L, Ma J, Guo H, Neumark DM. Feshbach resonances in the exit channel of the F + CH3OH → HF + CH3O reaction observed using transition-state spectroscopy. Nat Chem 2017; 9:950-955. [DOI: 10.1038/nchem.2804] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/19/2017] [Indexed: 11/09/2022]
|
24
|
Ren Z, Sun Z, Zhang D, Yang X. A review of dynamical resonances in A + BC chemical reactions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:026401. [PMID: 28008875 DOI: 10.1088/1361-6633/80/2/026401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The concept of the transition state has played an important role in the field of chemical kinetics and reaction dynamics. Reactive resonances in the transition-state region can dramatically enhance the reaction probability; thus investigation of the reactive resonances has attracted great attention from chemical physicists for many decades. In this review, we mainly focus on the recent progress made in probing the elusive resonance phenomenon in the simple A + BC reaction and understanding its nature, especially in the benchmark F/Cl + H2 and their isotopic variants. The signatures of reactive resonances in the integral cross section, differential cross section (DCS), forward- and backward-scattered DCS, and anion photodetachment spectroscopy are comprehensively presented in individual prototype reactions. The dynamical origins of reactive resonances are also discussed in this review, based on information on the wave function in the transition-state region obtained by time-dependent quantum wave-packet calculations.
Collapse
Affiliation(s)
- Zefeng Ren
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, People's Republic of China. International Center for Quantum Materials (ICQM) and School of Physics, Peking University, Beijing 100871, People's Republic of China. Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
| | | | | | | |
Collapse
|
25
|
Pan H, Liu K, Caracciolo A, Casavecchia P. Crossed beam polyatomic reaction dynamics: recent advances and new insights. Chem Soc Rev 2017; 46:7517-7547. [DOI: 10.1039/c7cs00601b] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the developments in polyatomic reaction dynamics, focusing on reactions of unsaturated hydrocarbons with O-atoms and methane with atoms/radicals.
Collapse
Affiliation(s)
- Huilin Pan
- Institute of Atomic and Molecular Sciences (IAMS)
- Academia Sinica
- Taipei
- Taiwan
| | - Kopin Liu
- Institute of Atomic and Molecular Sciences (IAMS)
- Academia Sinica
- Taipei
- Taiwan
- Department of Physics
| | - Adriana Caracciolo
- Dipartimento di Chimica
- Biologia e Biotecnologie
- Università degli Studi di Perugia
- 06123 Perugia
- Italy
| | - Piergiorgio Casavecchia
- Dipartimento di Chimica
- Biologia e Biotecnologie
- Università degli Studi di Perugia
- 06123 Perugia
- Italy
| |
Collapse
|
26
|
De Fazio D, Cavalli S, Aquilanti V. Benchmark Quantum Mechanical Calculations of Vibrationally Resolved Cross Sections and Rate Constants on ab Initio Potential Energy Surfaces for the F + HD Reaction: Comparisons with Experiments. J Phys Chem A 2016; 120:5288-99. [PMID: 27186680 DOI: 10.1021/acs.jpca.6b01471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dario De Fazio
- Istituto di Struttura della
Materia, Consiglio Nazionale delle Ricerche, 00016 Roma, Italy
| | - Simonetta Cavalli
- Dipartimento di Chimica,
Biologia e Biotecnologie, Università di Perugia, 06123 Perugia, Italy
| | - Vincenzo Aquilanti
- Dipartimento di Chimica,
Biologia e Biotecnologie, Università di Perugia, 06123 Perugia, Italy
| |
Collapse
|
27
|
Yu D, Chen J, Cong S, Sun Z. Theoretical Study of FH2– Electron Photodetachment Spectra on New Ab Initio Potential Energy Surfaces. J Phys Chem A 2015; 119:12193-208. [DOI: 10.1021/acs.jpca.5b06153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dequan Yu
- State
Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical
and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- School
of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Jun Chen
- State
Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical
and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Shulin Cong
- School
of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Zhigang Sun
- State
Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical
and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Center
for Advanced Chemical Physics and 2011 Frontier Center for Quantum
Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, People’s Republic of China
| |
Collapse
|
28
|
Kim JB, Weichman ML, Sjolander TF, Neumark DM, Kłos J, Alexander MH, Manolopoulos DE. Spectroscopic observation of resonances in the F + H
2
reaction. Science 2015; 349:510-3. [DOI: 10.1126/science.aac6939] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jongjin B. Kim
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Millard H. Alexander
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - David E. Manolopoulos
- Department of Chemistry, Oxford University, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
29
|
Chen J, Sun Z, Zhang DH. An accurate potential energy surface for the F + H2 → HF + H reaction by the coupled-cluster method. J Chem Phys 2015; 142:024303. [DOI: 10.1063/1.4904546] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
30
|
Sokolovski D, Akhmatskaya E, Echeverría-Arrondo C, De Fazio D. Complex angular momentum theory of state-to-state integral cross sections: resonance effects in the F + HD → HF(v′ = 3) + D reaction. Phys Chem Chem Phys 2015; 17:18577-89. [DOI: 10.1039/c5cp01169h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
State-to-state reactive integral cross sections (ICSs) are often affected by quantum mechanical resonances, especially in the neighborhood of a reactive threshold.
Collapse
Affiliation(s)
- D. Sokolovski
- Departmento de Química-Física
- Universidad del País Vasco
- UPV/EHU
- Leioa
- Spain
| | - E. Akhmatskaya
- IKERBASQUE
- Basque Foundation for Science
- Bilbao
- Spain
- Basque Center for Applied Mathematics (BCAM)
| | | | - D. De Fazio
- Istituto di Struttura della Materia
- CNR
- 00016 Roma
- Italy
| |
Collapse
|
31
|
Wang T, Yang T, Xiao C, Sun Z, Huang L, Dai D, Yang X, Zhang DH. Isotope-Dependent Rotational States Distributions Enhanced by Dynamic Resonance States: A Comparison Study of the F + HD → HF(vHF = 2) + D and F + H2 → HF(vHF = 2) + H Reaction. J Phys Chem Lett 2014; 5:3049-3055. [PMID: 26278258 DOI: 10.1021/jz501460k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An interesting trimodal structure in the HF (v' = 2) rotational distribution produced by the F + HD (v = 0, j = 0) reaction, but monomodal structure in the HF (v' = 2) rotational distribution produced by the F + H2 (v = 0, j = 0) reaction, were observed using a high-resolution crossed molecular beam apparatus. The rotational states of product HF (v' = 2) are much hotter in the F + HD reaction. It is uncovered that the observations are due to the dominant role of the dynamical resonance states in these two isotopic reactions. The angular potential well in the region of the resonance state of the F + HD reaction is much deeper and supports wave function with high angular kinetic energy, which in turn comes from different H tunneling processes in the F + HD and F + H2 reaction.
Collapse
Affiliation(s)
- Tao Wang
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Tiangang Yang
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Chunlei Xiao
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhigang Sun
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- ‡Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, People's Republic of China
| | - Long Huang
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Dongxu Dai
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- ‡Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, People's Republic of China
| | - Xueming Yang
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- ‡Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, People's Republic of China
| | - Dong H Zhang
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- ‡Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, People's Republic of China
| |
Collapse
|
32
|
Perimetric coordinate system in potential energy surfaces, spline interpolations, and the study of triatomic reaction dynamics. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1547-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Cavalli S, Aquilanti V, Mundim KC, De Fazio D. Theoretical reaction kinetics astride the transition between moderate and deep tunneling regimes: the F + HD case. J Phys Chem A 2014; 118:6632-41. [PMID: 24893210 DOI: 10.1021/jp503463w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For the reaction between F and HD, giving HF + D and DF + H, the rate constants, obtained from rigorous quantum scattering calculations at temperatures ranging from 350 K down to 100 K, show deviations from the Arrhenius behavior that have been interpreted in terms of tunneling of either H or D atoms through a potential energy barrier. The interval of temperature investigated extends from above to below a crossover value Tc, a transition temperature separating the moderate and deep quantum tunneling regimes. Below Tc, the rate of the H or D exchange reaction is controlled by the prevalence of tunneling over the thermal activation mechanism. In this temperature range, Bell's early treatment of quantum tunneling, based on a semiclassical approximation for the barrier permeability, provides a reliable tool to quantitatively account for the contribution of the tunneling effect. This treatment is here applied for extracting from rate constants properties of the effective tunneling path, such as the activation barrier height and width. We show that this is a way of parametrizing the dependence of the apparent activation energy on temperature useful for both calculated and experimental rate constants in an ample interval of temperature, from above to below Tc, relevant for modelization of astrophysical and in general very low-temperature environments.
Collapse
Affiliation(s)
- S Cavalli
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia , 06123 Perugia, Italy
| | | | | | | |
Collapse
|
34
|
Lavert-Ofir E, Shagam Y, Henson AB, Gersten S, Kłos J, Żuchowski PS, Narevicius J, Narevicius E. Observation of the isotope effect in sub-kelvin reactions. Nat Chem 2014; 6:332-5. [DOI: 10.1038/nchem.1857] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/17/2013] [Indexed: 11/09/2022]
|
35
|
Scattering resonance state of Br+HBr(v=0)→BrH(v′=0)+Br reaction explored by partial potential energy surface method. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-3254-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Krasilnikov MB, Popov RS, Roncero O, De Fazio D, Cavalli S, Aquilanti V, Vasyutinskii OS. Polarization of molecular angular momentum in the chemical reactions Li + HF and F + HD. J Chem Phys 2013; 138:244302. [DOI: 10.1063/1.4809992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
37
|
Li Y, Yuan J, Chen M, Ma F, Sun M. Accurate double many-body expansion potential energy surface by extrapolation to the complete basis set limit and dynamics calculations for ground state of NH2. J Comput Chem 2013; 34:1686-96. [PMID: 23666848 DOI: 10.1002/jcc.23310] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 11/11/2022]
Abstract
An accurate single-sheeted double many-body expansion potential energy surface is reported for the title system. A switching function formalism has been used to warrant the correct behavior at the H2(X1Σg+)+N(2D) and NH (X3Σ-)+H(2S) dissociation channels involving nitrogen in the ground N(4S) and first excited N(2D) states. The topographical features of the novel global potential energy surface are examined in detail, and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. The novel surface can be using to treat well the Renner-Teller degeneracy of the 12A″ and 12A' states of NH 2. Such a work can both be recommended for dynamics studies of the N(2D)+H2 reaction and as building blocks for constructing the double many-body expansion potential energy surface of larger nitrogen/hydrogen-containing systems. In turn, a test theoretical study of the reaction N(2D)+H2(X1Σg+)(ν=0,j=0)→NH (X3Σ-)+H(2S) has been carried out with the method of quantum wave packet on the new potential energy surface. Reaction probabilities, integral cross sections, and differential cross sections have been calculated. Threshold exists because of the energy barrier (68.5 meV) along the minimum energy path. On the curve of reaction probability for total angular momentum J = 0, there are two sharp peaks just above threshold. The value of integral cross section increases quickly from zero to maximum with the increase of collision energy, and then stays stable with small oscillations. The differential cross section result shows that the reaction is a typical forward and backward scatter in agreement with experimental measurement result.
Collapse
Affiliation(s)
- Yongqing Li
- Department of Physics, Liaoning University, Shenyang, 110036, China
| | | | | | | | | |
Collapse
|
38
|
Takahashi K, Hayes MY, Skodje RT. A study of resonance progressions in the F + HCl → Cl + HF reaction: A lifetime matrix analysis of pre-reactive and post-reactive collision complexes. J Chem Phys 2013; 138:024309. [DOI: 10.1063/1.4774057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Li A, Guo H, Sun Z, Kłos J, Alexander MH. State-to-state quantum dynamics of the F + HCl (vi = 0, ji = 0) → HF(vf, jf) + Cl reaction on the ground state potential energy surface. Phys Chem Chem Phys 2013; 15:15347-55. [DOI: 10.1039/c3cp51870a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Palma J, Manthe U. A full-dimensional wave packet dynamics study of the photodetachment spectra of FCH 4−. J Chem Phys 2012; 137:044306. [DOI: 10.1063/1.4737382] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
41
|
Investigating transition state resonances in the time domain by means of Bohmian mechanics: The F+HD reaction. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Gubbels KB, Meerakker SYTVD, Groenenboom GC, Meijer G, Avoird AVD. Scattering resonances in slow NH3–He collisions. J Chem Phys 2012; 136:074301. [DOI: 10.1063/1.3683219] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Liu K. Quantum Dynamical Resonances in Chemical Reactions: From A + BC to Polyatomic Systems. ADVANCES IN CHEMICAL PHYSICS 2012. [DOI: 10.1002/9781118180396.ch1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
44
|
Meng F, Yan W, Wang D. Quantum dynamics study of the Cl + CH4 → HCl + CH3 reaction: reactive resonance, vibrational excitation reactivity, and rate constants. Phys Chem Chem Phys 2012; 14:13656-62. [DOI: 10.1039/c2cp41917c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
|
46
|
Yacovitch TI, Garand E, Kim JB, Hock C, Theis T, Neumark DM. Vibrationally resolved transition state spectroscopy of the F + H2 and F + CH4 reactions. Faraday Discuss 2012; 157:399-414; discussion 475-500. [DOI: 10.1039/c2fd20011b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
LU XI, WANG HUAYANG, CAI ZHENGTING, FENG DACHENG. THEORETICAL STUDY ON PARTIAL POTENTIAL SURFACE AND SCATTERING RESONANCE STATE OF THE ASYMMETRICAL H EXCHANGING X + H2O → XH + OH (X = Cl, F, H) REACTIVE SYSTEM. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633607003234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the course of an extensive investigation aimed at understanding the detailed mechanism of a prototypical polyatomic reaction, several remarkable observations were uncovered. To interpret these findings, we surmise the existence of a reactive resonance in this polyatomic reaction. The system of concern is X + H 2 O → XH + OH ( X = Cl, F, H ), and it belongs to a type of asymmetrical H exchanging reaction. Because the concerned electronic number is quite small, it is usually regarded as a template constructed the model of theory or experiment. In this paper, compared with the symmetrical systems, we constructed the partial potential surfaces of asymmetrical systems in order to research their resonance states. All results are in good agreement with previous theoretical and experimental works.
Collapse
Affiliation(s)
- XI LU
- Institute of the Theoretical Chemistry, Shandong University, Jinan 250100, China
| | - HUAYANG WANG
- Institute of the Theoretical Chemistry, Shandong University, Jinan 250100, China
| | - ZHENGTING CAI
- Institute of the Theoretical Chemistry, Shandong University, Jinan 250100, China
| | - DACHENG FENG
- Institute of the Theoretical Chemistry, Shandong University, Jinan 250100, China
| |
Collapse
|
48
|
Dong WR, Xiao CL, Wang T, Dai DX, Wang XY, Yang XM. High Resolution Crossed Molecular Beams Study on the F+HD→HF+D Reaction at Collision Energy of 5.43–18.73 kJ/mol. CHINESE J CHEM PHYS 2011. [DOI: 10.1088/1674-0068/24/05/507-514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Dong WR, Xiao CL, Wang T, Dai DX, Wang XY, Yang XM. High Resolution Crossed Molecular Beams Study on the F+HD→DF+H Reaction at Collision Energy of 8.19–18.98 kJ/mol. CHINESE J CHEM PHYS 2011. [DOI: 10.1088/1674-0068/24/05/521-528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Cavalli S, De Fazio D. Coalescence of metastable states in chemical reactions: double poles of the scattering matrix and exceptional points. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-0915-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|