1
|
Zhang L, Liu R, Liu L, Xing X, Cai H, Fu Y, Sun J, Ruan W, Chen J, Qiu X, Yu D. Study of cell and drug interactions based on dual-mode detection using SPR and fluorescence imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124170. [PMID: 38513319 DOI: 10.1016/j.saa.2024.124170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
The investigation of the interactions between cells and drugs forms a crucial aspect of biological and clinical medical studies. Generally, single-cell or local-cellular studies require a microscopic imaging system with high magnifications, which suffers from low detection throughputs and poor time responses. The study presented in this paper combined SPR and fluorescence to achieve cell localization, real-time monitoring of cell images and quantitative analysis of drugs. In order to obtain more comprehensive, accurate and real-time data, a dual-mode system based on surface plasmon resonance (SPR) and fluorescence was constructed based on a 4× magnification lens. This enables simultaneous studies of an entire cell and a specific region of the cell membrane. An adaptive adjustment algorithm was established for distorted SPR images, achieving temporal and spatial matching of the dual-mode detection. The combination of SPR and fluorescence not only achieved micro-detection but also complemented the qualitative or quantitative limitations of SPR or fluorescence method alone. In system characterization, the response signal of SPR was noticed to increase with the increasing concentration of EGF in stimulated cells. It indicated that this platform could be employed for quantitative detection of the cell membrane region. Upon addition of EGF, a peak in the SPR curve was observed, and the cells in the corresponding SPR image turned whiter. This indicated that the platform can simultaneously monitor the SPR response signal and image changes. The response time of fluorescence in EGF testing was several seconds earlier than SPR, revealing that signal transduction first occurred in the whole cell and then propagated to the cell membrane region. The inhibitory ability of Gefitinib on cells was verified in a fast and real-time manner within 20 min. The results indicated that the detection limit of this method was 20 IU/mL for EGF and 10 µg/mL for Gefitinib. In conclusion, this study demonstrates the advantages of SPR and fluorescence dual-mode techniques in the analysis of cell-drug interactions, as well as their strong potential in drug screening.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Runye Liu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Luyao Liu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoxing Xing
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoyuan Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongdong Fu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianhai Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Ruan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianbo Qiu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Duli Yu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Hemmerová E, Homola J. Combining plasmonic and electrochemical biosensing methods. Biosens Bioelectron 2024; 251:116098. [PMID: 38359667 DOI: 10.1016/j.bios.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The idea of combining electrochemical (EC) and plasmonic biosensor methods was introduced almost thirty years ago and the potential of electrochemical-plasmonic (EC-P) biosensors has been highlighted ever since. Despite that, the use of EC-P biosensors in analytics has been rather limited so far and the search for unique applications of the EC-P method continues. In this paper, we review the advances in the field of EC-P biosensors and discuss the features and benefits they can provide. In addition, we identify the main challenges for the development of EC-P biosensors and the limitations that prevent EC-P biosensors from more widespread use. Finally, we review applications of EC-P biosensors for the investigation and quantification of biomolecules, and for the study of biomolecular and cellular processes.
Collapse
Affiliation(s)
- Erika Hemmerová
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic.
| |
Collapse
|
3
|
Nawa Y, Tawa K. High spatial resolution surface plasmon resonance imaging using a plasmonic chip. J Chem Phys 2024; 160:164710. [PMID: 38651813 DOI: 10.1063/5.0201230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
The surface plasmon resonance (SPR) technique has been widely applied to biosensing technologies for the rapid quantification of biomolecules without enzyme and fluorescent labeling. However, the conventional prism-coupling SPR method generally has a detection area of a few mm2, and the large contribution of the background signal forms a barrier to highly sensitive detection. Based on a highly spatially resolved SPR method, the present study constructed a scanning GC-SPR imaging instrument using an objective lens with a high numerical aperture and a plasmonic chip that could be used for grating-coupled SPR. Focusing light on the diffraction limit can suppress background signals and improve detection sensitivity. SPR imaging can also be performed by scanning a focal spot. Using this method, the refractive index of a mixture of water and dimethyl sulfoxide was measured with a detection accuracy of 2.43 × 10-3 RIU. Polydopamine films prepared with a thickness of <5 nm were also measured, and each film thickness was evaluated with high sensitivity from the effective refractive index detected in a small area of <1 µm2.
Collapse
Affiliation(s)
- Yasunori Nawa
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Keiko Tawa
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
4
|
Recent advances in surface plasmon resonance imaging and biological applications. Talanta 2023; 255:124213. [PMID: 36584617 DOI: 10.1016/j.talanta.2022.124213] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Surface Plasmon Resonance Imaging (SPRI) is a robust technique for visualizing refractive index changes, which enables researchers to observe interactions between nanoscale objects in an imaging manner. In the past period, scholars have been attracted by the Prism-Coupled and Non-prism Coupled configurations of SPRI and have published numerous experimental results. This review describes the principle of SPRI and discusses recent developments in Prism-Coupled and Non-prism Coupled SPRI techniques in detail, respectively. And then, major advances in biological applications of SPRI are reviewed, including four sub-fields (cells, viruses, bacteria, exosomes, and biomolecules). The purpose is to briefly summarize the recent advances of SPRI and provide an outlook on the development of SPRI in various fields.
Collapse
|
5
|
Electrochemistry combined-surface plasmon resonance biosensors: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Yanase Y, Yoshizaki K, Kimura K, Kawaguchi T, Hide M, Uno S. Development of SPR Imaging-Impedance Sensor for Multi-Parametric Living Cell Analysis. SENSORS 2019; 19:s19092067. [PMID: 31058824 PMCID: PMC6539035 DOI: 10.3390/s19092067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 11/16/2022]
Abstract
Label-free evaluation and monitoring of living cell conditions or functions by means of chemical and/or physical sensors in a real-time manner are increasingly desired in the field of basic research of cells and clinical diagnosis. In order to perform multi-parametric analysis of living cells on a chip, we here developed a surface plasmon resonance (SPR) imaging (SPRI)-impedance sensor that can detect both refractive index (RI) and impedance changes on a sensor chip with comb-shaped electrodes. We then investigated the potential of the sensor for label-free and real-time analysis of living cell reactions in response to stimuli. We cultured rat basophilic leukemia (RBL)-2H3 cells on the sensor chip, which was a glass slide coated with comb-shaped electrodes, and detected activation of RBL-2H3 cells, such as degranulation and morphological changes, in response to a dinitro-phenol-conjugated human serum albumin (DNP-HSA) antigen. Moreover, impedance analysis revealed that the changes of impedance derived from RBL-2H3 cell activation appeared in the range of 1 kHz–1 MHz. Furthermore, we monitored living cell-derived RI and impedance changes simultaneously on a sensor chip using the SPRI-impedance sensor. Thus, we developed a new technique to monitor both impedance and RI derived from living cells by using a comb-shaped electrode sensor chip. This technique may enable us to clarify complex living cell functions which affect the RI and impedance and apply this to medical applications, such as accurate clinical diagnosis of type I allergy.
Collapse
Affiliation(s)
- Yuhki Yanase
- Department of Dermatology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, minami-ku, Hiroshima 734-8551, Japan.
| | - Kyohei Yoshizaki
- Department of Electrical and Electronic, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Kaiken Kimura
- Department of Electrical and Electronic, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Tomoko Kawaguchi
- Department of Dermatology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, minami-ku, Hiroshima 734-8551, Japan.
| | - Michihiro Hide
- Department of Dermatology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, minami-ku, Hiroshima 734-8551, Japan.
| | - Shigeyasu Uno
- Department of Electrical and Electronic, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
7
|
Zhu C, Ge B, Chen R, Zhu X, Mi L, Ma J, Wang X, Zheng F, Fei Y. Fast Focal Point Correction in Prism-Coupled Total Internal Reflection Scanning Imager Using an Electronically Tunable Lens. SENSORS (BASEL, SWITZERLAND) 2018; 18:E524. [PMID: 29425166 PMCID: PMC5854966 DOI: 10.3390/s18020524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022]
Abstract
Total internal reflection (TIR) is useful for interrogating physical and chemical processes that occur at the interface between two transparent media. Yet prism-coupled TIR imaging microscopes suffer from limited sensing areas due to the fact that the interface (the object plane) is not perpendicular to the optical axis of the microscope. In this paper, we show that an electrically tunable lens can be used to rapidly and reproducibly correct the focal length of an oblique-incidence scanning microscope (OI-RD) in a prism-coupled TIR geometry. We demonstrate the performance of such a correction by acquiring an image of a protein microarray over a scan area of 4 cm² with an effective resolution of less than 20 microns. The electronic focal length tuning eliminates the mechanical movement of the illumination lens in the scanning microscope and in turn the noise and background drift associated with the motion.
Collapse
Affiliation(s)
- Chenggang Zhu
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Bilin Ge
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Ru Chen
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Xiangdong Zhu
- Department of Physics, University of California, Davis, CA 95616, USA.
| | - Lan Mi
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Jiong Ma
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Xu Wang
- Department of Fundamental Courses, Wuxi Institute of Technology, Wuxi 214121, China.
| | - Fengyun Zheng
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China.
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| |
Collapse
|
8
|
Hasanzadeh M, Shadjou N, de la Guardia M. Early stage diagnosis of programmed cell death (apoptosis) using electroanalysis: Nanomaterial and methods overview. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Deng S, Yu X, Liu R, Chen W, Wang P. A two-compartment microfluidic device for long-term live cell detection based on surface plasmon resonance. BIOMICROFLUIDICS 2016; 10:044109. [PMID: 27570574 PMCID: PMC4975751 DOI: 10.1063/1.4960487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
A two-compartment microfluidic device integrated with a surface plasmon resonance (SPR) interferometric imaging system has been developed for long-term and real-time cell detection. The device uses a porous membrane sandwiched between two chambers to obtain an exact medium exchange rate and minimal fluid shear stress for cell culture. The two-compartment device was optimized by COMSOL simulations and fabricated using Poly (dimethylsiloxane) elastomer replica molding methods. To confirm the capability of the microfluidic device to maintain the cell physiological environment over long intervals, HeLa cells were cultured in the device for up to 48 h. The cell proliferation process was monitored by both SPR and microscopic time-lapse imaging. The SPR response showed four phases with different growth rates, and agreed well with the time-lapse imaging. Furthermore, real-time detection of cell behaviors under different doses of Paclitaxel and Cisplatin was performed. The SPR responses revealed dose-dependent inhibitions of cell proliferation, with distinct drug action kinetics.
Collapse
Affiliation(s)
- Shijie Deng
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University , Beijing 100084, People's Republic of China
| | - Xinglong Yu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University , Beijing 100084, People's Republic of China
| | - Ran Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University , Beijing 100084, People's Republic of China
| | - Weixing Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University , Beijing 100084, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University , Beijing 100084, People's Republic of China
| |
Collapse
|
10
|
Cai WP, Zhai YY, Cao SH, Liu Q, Weng YH, Xie KX, Lin GC, Li YQ. High performance dual-mode surface plasmon coupled emission imaging apparatus integrating Kretschmann and reverse Kretschmann configurations for flexible measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:013705. [PMID: 26827326 DOI: 10.1063/1.4940193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A Kretschmann (KR) and reverse Kretschmann (RK) dual-mode surface plasmon coupled emission (SPCE) imaging apparatus based on prism coupling was built up. Highly directional and polarized fluorescence images for both RK and KR configurations were obtained. Besides, surface plasmon field-enhanced fluorescence and free space imaging can also be measured conveniently from this apparatus. Combining the high sensitivity of KR mode and the simplicity of RK mode, the multifunctional imaging system is flexible to provide different configurations for imaging applications. Compared to the free space imaging, SPCE imaging provides enhanced fluorescence, especially large enhancement up to about 50 fold in KR configuration. Additionally, the degree of evanescent field enhancement effect was easily estimated experimentally using the apparatus to compare the different imaging configurations. We believed that the dual-mode SPCE imaging apparatus will be useful in fundamental study of plasmon-controlled fluorescence and be a powerful tool for optical imaging, especially for microarray and biological applications.
Collapse
Affiliation(s)
- Wei-Peng Cai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan-Yun Zhai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qian Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Hua Weng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai-Xin Xie
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guo-Chun Lin
- School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Wu C, Rehman FU, Li J, Ye J, Zhang Y, Su M, Jiang H, Wang X. Real-Time Evaluation of Live Cancer Cells by an in Situ Surface Plasmon Resonance and Electrochemical Study. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24848-24854. [PMID: 26492438 DOI: 10.1021/acsami.5b08066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This work presents a new strategy of the combination of surface plasmon resonance (SPR) and electrochemical study for real-time evaluation of live cancer cells treated with daunorubicin (DNR) at the interface of the SPR chip and living cancer cells. The observations demonstrate that the SPR signal changes could be closely related to the morphology and mass changes of adsorbed cancer cells and the variation of the refractive index of the medium solution. The results of light microscopy images and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide studies also illustrate the release or desorption of HepG2 cancer cells, which were due to their apoptosis after treatment with DNR. It is evident that the extracellular concentration of DNR residue can be readily determined through electrochemical measurements. The decreases in the magnitudes of SPR signals were linearly related to cell survival rates, and the combination of SPR with electrochemical study could be utilized to evaluate the potential therapeutic efficiency of bioactive agents to cells. Thus, this label-free, real-time SPR-electrochemical detection technique has great promise in bioanalysis or monitoring of relevant treatment processes in clinical applications.
Collapse
Affiliation(s)
- Changyu Wu
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Fawad Ur Rehman
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Jingyuan Li
- Laboratory Animal Center, Nantong University , Nantong 226001, China
| | - Jing Ye
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Yuanyuan Zhang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Meina Su
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| |
Collapse
|
12
|
Yanase Y, Hiragun T, Ishii K, Kawaguchi T, Yanase T, Kawai M, Sakamoto K, Hide M. Surface plasmon resonance for cell-based clinical diagnosis. SENSORS 2014; 14:4948-59. [PMID: 24618778 PMCID: PMC4003976 DOI: 10.3390/s140304948] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/05/2023]
Abstract
Non-invasive real-time observations and the evaluation of living cell conditions and functions are increasingly demanded in life sciences. Surface plasmon resonance (SPR) sensors detect the refractive index (RI) changes on the surface of sensor chips in label-free and on a real-time basis. Using SPR sensors, we and other groups have developed techniques to evaluate living cells' reactions in response to stimuli without any labeling in a real-time manner. The SPR imaging (SPRI) system for living cells may visualize single cell reactions and has the potential to expand application of SPR cell sensing for clinical diagnosis, such as multi-array cell diagnostic systems and detection of malignant cells among normal cells in combination with rapid cell isolation techniques.
Collapse
Affiliation(s)
- Yuhki Yanase
- Department of Dermatology, Division of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Takaaki Hiragun
- Department of Dermatology, Division of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Kaori Ishii
- Department of Dermatology, Division of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Tomoko Kawaguchi
- Department of Dermatology, Division of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Tetsuji Yanase
- Department of Dermatology, Division of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Mikio Kawai
- Department of Dermatology, Division of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Kenji Sakamoto
- Center for Microelectronic systems, Kyushu Institute of Technology, 680-4, Kawazu, Iizuka, Fukuoka, 820-8502, Japan.
| | - Michihiro Hide
- Department of Dermatology, Division of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|