1
|
He L, Johny M, Kierspel T, Długołęcki K, Bari S, Boll R, Bromberger H, Coreno M, De Fanis A, Di Fraia M, Erk B, Gisselbrecht M, Grychtol P, Eng-Johnsson P, Mazza T, Onvlee J, Ovcharenko Y, Petrovic J, Rennhack N, Rivas DE, Rudenko A, Rühl E, Schwob L, Simon M, Trinter F, Usenko S, Wiese J, Meyer M, Trippel S, Küpper J. Controlled molecule injector for cold, dense, and pure molecular beams at the European x-ray free-electron laser. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:113301. [PMID: 39540812 DOI: 10.1063/5.0219086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
A permanently available molecular-beam injection setup for controlled molecules (COMO) was installed and commissioned at the small quantum systems (SQS) instrument at the European x-ray free-electron laser (EuXFEL). A b-type electrostatic deflector allows for pure state-, size-, and isomer-selected samples of polar molecules and clusters. The source provides a rotationally cold (T ≈ 1 K) and dense (ρ ≈ 108 cm-3) molecular beam with pulse durations up to 100 µs generated by a new version of the Even-Lavie valve. Here, a performance overview of the COMO setup is presented along with characterization experiments performed both with an optical laser at the Center for Free-Electron-Laser Science and with x rays at EuXFEL under burst-mode operation. COMO was designed to be attached to different instruments at the EuXFEL, in particular, the SQS and single particles, clusters, and biomolecules (SPB) instruments. This advanced controlled-molecules injection setup enables x-ray free-electron laser studies using highly defined samples with soft and hard x-ray FEL radiation for applications ranging from atomic, molecular, and cluster physics to elementary processes in chemistry and biology.
Collapse
Affiliation(s)
- Lanhai He
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Melby Johny
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thomas Kierspel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Karol Długołęcki
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Rebecca Boll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Hubertus Bromberger
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marcello Coreno
- ISM-CNR, Istituto Struttura della Materia, LD2 Unit, Basovizza Area Science Park, 34149 Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.P.A., Basovizza, Trieste 34149, Italy
| | | | - Michele Di Fraia
- Elettra-Sincrotrone Trieste S.C.P.A., Basovizza, Trieste 34149, Italy
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | | | | | - Tommaso Mazza
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jolijn Onvlee
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Jovana Petrovic
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Nils Rennhack
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Eckart Rühl
- Physical Chemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Florian Trinter
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sergey Usenko
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Joss Wiese
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Michael Meyer
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Sebastian Trippel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
2
|
Saftien P, Lange K, Christen W. Analysis of the piezo- and pyroelectric response of PVDF foils as fast particle detectors in pulsed supersonic jets. Phys Chem Chem Phys 2024; 26:21270-21281. [PMID: 39078017 DOI: 10.1039/d4cp00901k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
We report the design and performance of a new, rugged, general-purpose particle detector consisting of a stretched foil of polyvinylidene difluoride. Several detectors have been built and evaluated for applications in pulsed supersonic jet experiments where, e.g., particle density shall be measured with high time resolution. The working principle is that a directed bunch of particles, moving in vacuum, collides with the sensitive detector area and generates an electric charge. This charge generation is due to both the piezo- and the pyroelectric effect and results in a very fast detector response. In our detailed analysis of the detected signal, the piezoelectric contribution is defined by the constitutive equations of piezoelectricity, which are used in combination with the concept of a driven damped circular membrane allowing to obtain an analytic solution. The pyroelectric contribution is described via the exchanged energy between the impinging particle pulse and the detector foil. Because both the piezo- and the pyroelectric effects can be exploited, additional information about the particle impact such as the coefficient of energy accommodation or the coefficient of restitution can be determined experimentally.
Collapse
Affiliation(s)
- Paul Saftien
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Karsten Lange
- SLT Sensor- und Lasertechnik GmbH, Freiheitstraße 124-126, 15745 Wildau, Germany
| | - Wolfgang Christen
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
3
|
Ulmer A, Heilrath A, Senfftleben B, O'Connell-Lopez SMO, Kruse B, Seiffert L, Kolatzki K, Langbehn B, Hoffmann A, Baumann TM, Boll R, Chatterley AS, De Fanis A, Erk B, Erukala S, Feinberg AJ, Fennel T, Grychtol P, Hartmann R, Ilchen M, Izquierdo M, Krebs B, Kuster M, Mazza T, Montaño J, Noffz G, Rivas DE, Schlosser D, Seel F, Stapelfeldt H, Strüder L, Tiggesbäumker J, Yousef H, Zabel M, Ziołkowski P, Meyer M, Ovcharenko Y, Vilesov AF, Möller T, Rupp D, Tanyag RMP. Generation of Large Vortex-Free Superfluid Helium Nanodroplets. PHYSICAL REVIEW LETTERS 2023; 131:076002. [PMID: 37656857 DOI: 10.1103/physrevlett.131.076002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/22/2023] [Indexed: 09/03/2023]
Abstract
Superfluid helium nanodroplets are an ideal environment for the formation of metastable, self-organized dopant nanostructures. However, the presence of vortices often hinders their formation. Here, we demonstrate the generation of vortex-free helium nanodroplets and explore the size range in which they can be produced. From x-ray diffraction images of xenon-doped droplets, we identify that single compact structures, assigned to vortex-free aggregation, prevail up to 10^{8} atoms per droplet. This finding builds the basis for exploring the assembly of far-from-equilibrium nanostructures at low temperatures.
Collapse
Affiliation(s)
- Anatoli Ulmer
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Andrea Heilrath
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Björn Senfftleben
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Sean M O O'Connell-Lopez
- Department of Chemistry, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089, USA
| | - Björn Kruse
- Institute for Physics, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | - Lennart Seiffert
- Institute for Physics, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | - Katharina Kolatzki
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
- Laboratory for Solid State Physics, Swiss Federal Institute of Technology in Zurich, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland
| | - Bruno Langbehn
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Andreas Hoffmann
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
| | | | - Rebecca Boll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adam S Chatterley
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | | | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Swetha Erukala
- Department of Chemistry, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089, USA
| | - Alexandra J Feinberg
- Department of Chemistry, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089, USA
| | - Thomas Fennel
- Institute for Physics, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | | | | | - Markus Ilchen
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Bennet Krebs
- Institute for Physics, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | - Markus Kuster
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tommaso Mazza
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Georg Noffz
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | | | | | - Fabian Seel
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | | | - Josef Tiggesbäumker
- Institute for Physics, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
- Department "Life, Light and Matter," Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | - Hazem Yousef
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Michael Zabel
- Institute for Physics, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | | | - Michael Meyer
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Andrey F Vilesov
- Department of Chemistry, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089, USA
- Department of Physics and Astronomy, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089, USA
| | - Thomas Möller
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Daniela Rupp
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
- Laboratory for Solid State Physics, Swiss Federal Institute of Technology in Zurich, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland
| | - Rico Mayro P Tanyag
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Barnea AR, Narevicius E, Narevicius J, Vinetsky M, Even U. Improved design for a highly efficient pulsed-valve supersonic source with extended operating frequency range. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:015110. [PMID: 33514262 DOI: 10.1063/5.0030197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
We present a new design for a pulsed supersonic-beam source, inspired by the Even-Lavie valve, which is about four times more energy efficient than its predecessor and can run at more than double the repetition rate without experiencing resonances. Its characteristics make it a better candidate as a source for cryogenic-related experiments as well as spectroscopy with rapidly pulsed lasers. The new design is also simpler to build and is more robust, making it accessible to a larger portion of the scientific community.
Collapse
Affiliation(s)
- A Ronny Barnea
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Edvardas Narevicius
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Julia Narevicius
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Vinetsky
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uzi Even
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|