1
|
Hua ZF, Zhao YX, Li YQ, Hu GM, Chen Y, Zhao DF. Ion-neutral photofragment coincidence imaging of photodissociation dynamics of ionic species. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2007119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Ze-feng Hua
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yun-xiao Zhao
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - You-qing Li
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Gao-ming Hu
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yang Chen
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Dong-feng Zhao
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Photodissociation dynamics of carbon dioxide cation via the vibrationally mediated A~2Πu,1/2υ1,υ2,0/B~2Σu+0,0,0 states in the wavelength range of 282–293 nm. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Bai XL, Zhao DF, Chen Y. Photodissociation dynamics of OCS at 207 nm: S( 1D 2)+CO( X1Σ +) product channel. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1908148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Xi-lin Bai
- School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
| | - Dong-feng Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yang Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Zhou Z, Feng S, Hua Z, Li Z, Chen Y, Zhao D. Dissociation dynamics of carbon dioxide cation (CO 2 +) in the C 2Σ g + state via [1+1] two-photon excitation. J Chem Phys 2020; 152:134304. [PMID: 32268747 DOI: 10.1063/1.5143848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The dissociation dynamics of CO2 + in the C2Σg + state has been studied in the 8.14-8.68 eV region by [1+1] two-photon excitation via vibronically selected intermediate A2Πu and B2Σu + states using a cryogenic ion trap velocity map imaging spectrometer. The cryogenic ion trap produces an internally cold mass selected ion sample of CO2 +. Total translational energy release (TER) and two-dimensional recoiling velocity distributions of fragmented CO+ ions are measured by time-sliced velocity map imaging. High resolution TER spectra allow us to identify and assign three dissociation channels of CO2 + (C2Σg +) in the studied energy region: (1) production of CO+(X2Σ+) + O(3P) by predissociation via spin-orbit coupling with the repulsive 14Πu state; (2) production of CO+(X2Σ+) + O(1D) by predissociation via bending and/or anti-symmetric stretching mediated conical intersection crossing with A2Πu or B2Σu +, where the C2Σg +/A2Πu crossing is considered to be more likely; (3) direct dissociation to CO+(A2Π) + O(3P) on the C2Σg + state surface, which exhibits a competitive intensity above its dissociation limit (8.20 eV). For the first dissociation channel, the fragmented CO+(X2Σ+) ions are found to have widely spread populations of both rotational and vibrational levels, indicating that bending of the parent CO2 + over a broad range is involved upon dissociation, while for the latter two channels, the produced CO+(X2Σ+) and CO+(A2Π) ions have relatively narrow rotational populations. The anisotropy parameters β are also measured for all three channels and are found to be nearly independent of the vibronically selected intermediate states, likely due to complicated intramolecular interactions in the studied energy region.
Collapse
Affiliation(s)
- Zhengfang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shaowen Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zefeng Hua
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhen Li
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yang Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Dongfeng Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
5
|
Hua Z, Feng S, Zhou Z, Liang H, Chen Y, Zhao D. A cryogenic cylindrical ion trap velocity map imaging spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:013101. [PMID: 30709209 DOI: 10.1063/1.5079264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
A cryogenic cylindrical ion trap velocity map imaging spectrometer has been developed to study photodissociation spectroscopy and dynamics of gaseous molecular ions and ionic complexes. A cylindrical ion trap made of oxygen-free copper is cryogenically cooled down to ∼7 K by using a closed cycle helium refrigerator and is coupled to a velocity map imaging (VMI) spectrometer. The cold trap is used to cool down the internal temperature of mass selected ions and to reduce the velocity spread of ions after extraction from the trap. For CO2 + ions, a rotational temperature of ∼12 K is estimated from the recorded [1 + 1] two-photon dissociation spectrum, and populations in spin-orbit excited X2Πg,1/2 and vibrationally excited states of CO2 + are found to be non-detectable, indicating an efficient internal cooling of the trapped ions. Based on the time-of-flight peak profile and the image of N3 +, the velocity spread of the ions extracted from the trap, both radially and axially, is interpreted as approximately ±25 m/s. An experimental image of fragmented Ar+ from 307 nm photodissociation of Ar2 + shows that, benefitting from the well-confined velocity spread of the cold Ar2 + ions, a VMI resolution of Δv/v ∼ 2.2% has been obtained. The current instrument resolution is mainly limited by the residual radial speed spread of the parent ions after extraction from the trap.
Collapse
Affiliation(s)
- Zefeng Hua
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shaowen Feng
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhengfang Zhou
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hao Liang
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yang Chen
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Dongfeng Zhao
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
6
|
Mao R, He C, Chen M, Zhou DN, Zhang Q, Chen Y. Photodissociation Dynamics of Carbon Dioxide Cation via the Vibrationally Mediated Ã2Πu,1/2 State: A Time-Sliced Velocity-Mapped Ion Imaging Study. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1611208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
7
|
Dhindhwal V, Baer M, Sathyamurthy N. Study of Topological Effects Concerning the Lowest A″ and the Three A′ States for the CO2+ Ion. J Phys Chem A 2015; 120:2999-3008. [DOI: 10.1021/acs.jpca.5b08921] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vikash Dhindhwal
- Department
of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab 140306, India
| | - Michael Baer
- Department
of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab 140306, India
- The
Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - N. Sathyamurthy
- Department
of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab 140306, India
| |
Collapse
|