1
|
Maruyama Y, Yoshida N. RISMiCal: A software package to perform fast RISM/3D-RISM calculations. J Comput Chem 2024; 45:1470-1482. [PMID: 38472097 DOI: 10.1002/jcc.27340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Solvent plays an essential role in a variety of chemical, physical, and biological processes that occur in the solution phase. The reference interaction site model (RISM) and its three-dimensional extension (3D-RISM) serve as powerful computational tools for modeling solvation effects in chemical reactions, biological functions, and structure formations. We present the RISM integrated calculator (RISMiCal) program package, which is based on RISM and 3D-RISM theories with fast GPU code. RISMiCal has been developed as an integrated RISM/3D-RISM program that has interfaces with external programs such as Gaussian16, GAMESS, and Tinker. Fast 3D-RISM programs for single- and multi-GPU codes written in CUDA would enhance the availability of these hybrid methods because they require the performance of many computationally expensive 3D-RISM calculations. We expect that our package can be widely applied for chemical and biological processes in solvent. The RISMiCal package is available at https://rismical-dev.github.io.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Data Science Center for Creative Design and Manufacturing, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan
- Department of Physics, School of Science and Technology, Meiji University, Kawasaki-shi, Kanagawa, Japan
| | - Norio Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
2
|
Moral R, Paul S. Exploring Cyclic Peptide Nanotube Stability Across Diverse Lipid Bilayers and Unveiling Water Transport Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:882-895. [PMID: 38134046 DOI: 10.1021/acs.langmuir.3c03030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Cyclic Peptide Nanotubes (CPNTs) have emerged as compelling candidates for various applications, particularly as nanochannels within lipid bilayers. In this study, the stability of two CPNTs, namely 8 × [(Cys-Gly-Met-Gly)2] and 8 × [(Gly-Leu)4], are comprehensively investigated across different lipid bilayers, including 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a mixed model membrane (POPE/POPG), and a realistic yeast model membrane. The results demonstrate that both CPNTs maintain their tubular structures in all lipid bilayers, with [(Cys-Gly-Met-Gly)2] showing increased stability over an extended period in these lipid membranes. The insertion of CPNTs shows negligible impact on lipid bilayer properties, including area per lipid, volume per lipid, and bilayer thickness. The study demonstrates that the CPNT preserves its two-line water movement pattern within all the lipid membranes, reaffirming their potential as water channels. The MSD curves further reveal that the dynamics of water molecules inside the nanotube are similar for all the bilayer systems with minor differences that arise due to different lipid environments.
Collapse
Affiliation(s)
- Rimjhim Moral
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Zhang ZW, Lu WC. AmberMDrun: A Scripting Tool for Running Amber MD in an Easy Way. Biomolecules 2023; 13:biom13040635. [PMID: 37189382 DOI: 10.3390/biom13040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
MD simulations have been widely applied and become a powerful tool in the field of biomacromolecule simulations and computer-aided drug design, etc., which can estimate binding free energy between receptor and ligand. However, the inputs and force field preparation for performing Amber MD is somewhat complicated, and challenging for beginners. To address this issue, we have developed a script for automatically preparing Amber MD input files, balancing the system, performing Amber MD for production, and predicting receptor-ligand binding free energy. This script is open-source, extensible and can support customization. The core code is written in C++ and has a Python interface, providing both efficient performance and convenience.
Collapse
|
4
|
Casillas L, Grigorian VM, Luchko T. Identifying Systematic Force Field Errors Using a 3D-RISM Element Counting Correction. Molecules 2023; 28:molecules28030925. [PMID: 36770599 PMCID: PMC9921782 DOI: 10.3390/molecules28030925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Hydration free energies of small molecules are commonly used as benchmarks for solvation models. However, errors in predicting hydration free energies are partially due to the force fields used and not just the solvation model. To address this, we have used the 3D reference interaction site model (3D-RISM) of molecular solvation and existing benchmark explicit solvent calculations with a simple element count correction (ECC) to identify problems with the non-bond parameters in the general AMBER force field (GAFF). 3D-RISM was used to calculate hydration free energies of all 642 molecules in the FreeSolv database, and a partial molar volume correction (PMVC), ECC, and their combination (PMVECC) were applied to the results. The PMVECC produced a mean unsigned error of 1.01±0.04kcal/mol and root mean squared error of 1.44±0.07kcal/mol, better than the benchmark explicit solvent calculations from FreeSolv, and required less than 15 s of computing time per molecule on a single CPU core. Importantly, parameters for PMVECC showed systematic errors for molecules containing Cl, Br, I, and P. Applying ECC to the explicit solvent hydration free energies found the same systematic errors. The results strongly suggest that some small adjustments to the Lennard-Jones parameters for GAFF will lead to improved hydration free energy calculations for all solvent models.
Collapse
|
5
|
Jon JS, Ri WK, Sin KR, Son YC, Jo KW, Pak JS, Kim SJ, Ri YJ, An YC. Derivation of the solvation effect-incorporated Poisson-Boltzmann equation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Omelyan I, Kovalenko A. Enhanced solvation force extrapolation for speeding up molecular dynamics simulations of complex biochemical liquids. J Chem Phys 2019; 151:214102. [PMID: 31822083 DOI: 10.1063/1.5126410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We propose an enhanced approach to the extrapolation of mean potential forces acting on atoms of solute macromolecules due to their interactions with solvent atoms in complex biochemical liquids. It improves and extends our previous extrapolation schemes by additionally including new techniques such as an exponential scaling transformation of coordinate space with weights complemented by an automatically adjusted balancing between the least square minimization of force deviations and the norm of expansion coefficients in the approximation. The expensive mean potential forces are treated in terms of the three-dimensional reference interaction site model with Kovalenko-Hirata closure molecular theory of solvation. During the dynamics, they are calculated only after every long (outer) time interval, i.e., quite rarely to reduce the computational costs. At much shorter (inner) time steps, these forces are extrapolated on the basis of their outer values. The equations of motion are then solved using a multiple time step integration within an optimized isokinetic Nosé-Hoover chain thermostat. The new approach is applied to molecular dynamics simulations of various systems consisting of solvated organic and biomolecules of different complexity. For example, we consider hydrated alanine dipeptide, asphaltene in toluene solvent, miniprotein 1L2Y, and protein G in aqueous solution. It is shown that in all these cases, the enhanced extrapolation provides much better accuracy of the solvation force approximation than the existing approaches. As a result, it can be used with much larger outer time steps, leading to a significant speedup of the simulations.
Collapse
Affiliation(s)
- Igor Omelyan
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Street, Lviv 79011, Ukraine
| | - Andriy Kovalenko
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
7
|
Sahu B, Shah S, Prabhudesai K, Contini A, Idicula-Thomas S. Discovery of small molecule binders of human FSHR(TMD) with novel structural scaffolds by integrating structural bioinformatics and machine learning algorithms. J Mol Graph Model 2019; 89:156-166. [DOI: 10.1016/j.jmgm.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
|
8
|
Kovalenko A, Gusarov S. Multiscale methods framework: self-consistent coupling of molecular theory of solvation with quantum chemistry, molecular simulations, and dissipative particle dynamics. Phys Chem Chem Phys 2018; 20:2947-2969. [DOI: 10.1039/c7cp05585d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this work, we will address different aspects of self-consistent field coupling of computational chemistry methods at different time and length scales in modern materials and biomolecular science.
Collapse
Affiliation(s)
- Andriy Kovalenko
- National Institute for Nanotechnology
- National Research Council of Canada
- Edmonton
- Canada
- Department of Mechanical Engineering
| | - Sergey Gusarov
- National Institute for Nanotechnology
- National Research Council of Canada
- Edmonton
- Canada
| |
Collapse
|
9
|
Cao S, Zhu L, Huang X. 3DRISM-HI-D2MSA: an improved analytic theory to compute solvent structure around hydrophobic solutes with proper treatment of solute–solvent electrostatic interactions. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1416195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Siqin Cao
- Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Lizhe Zhu
- Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
- HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
| |
Collapse
|
10
|
Lake PT, McCullagh M. Implicit Solvation Using the Superposition Approximation (IS-SPA): An Implicit Treatment of the Nonpolar Component to Solvation for Simulating Molecular Aggregation. J Chem Theory Comput 2017; 13:5911-5924. [PMID: 29120632 DOI: 10.1021/acs.jctc.7b00698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonpolar solute-solvent interactions are the driving force for aggregation in important chemical and biological phenomena including protein folding, peptide self-assembly, and oil-water emulsion formation. Currently, the most accurate and computationally efficient description of these processes requires an explicit treatment of all solvent and solute atoms. Previous computationally feasible implicit solvent models, such as solute surface area approaches, are unsuccessful at capturing aggregation features including both structural and energetic trends while more theoretically rigorous approaches, such as Reference Interaction Site Model (RISM), are accurate but extremely computationally demanding. Our approach, denoted Implicit Solvation using the Superposition Approximation (IS-SPA), builds on previous theory utilizing the Kirkwood superposition approximation to approximate the mean force of the solvent from solute parameters. We introduce and verify a parabolic first solvation shell truncation of atomic solvation, fitting water distributions around a molecule, and a Monte Carlo integration of the mean solvent force. These extensions allow this method to be implemented as an efficient nonpolar implicit solvent model for molecular simulation. The approximations in IS-SPA are first explored and justified for the homodimerization of an array of different sized Lennard-Jones spheres. The accuracy and transferability of the approach are demonstrated by its ability to capture the position and relative energies of the desolvation barrier and free energy minimum of alkane homodimers. The model is then shown to reproduce the phase separation and solubility of cyclohexane and water. These promising results, coupled with 2 orders of magnitude speed-up for dilute systems as compared to explicit solvent simulations, demonstrate that IS-SPA is an appealing approach to boost the time- and length-scale of molecular aggregation simulations.
Collapse
Affiliation(s)
- Peter T Lake
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Martin McCullagh
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| |
Collapse
|
11
|
Maruyama Y, Mitsutake A. Stability of Unfolded and Folded Protein Structures Using a 3D-RISM with the RMDFT. J Phys Chem B 2017; 121:9881-9885. [DOI: 10.1021/acs.jpcb.7b08487] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yutaka Maruyama
- Co-Design Team,
FLAGSHIP 2020 Project, RIKEN Advanced Institute for Computational Science, Kobe 650-0047, Japan
| | - Ayori Mitsutake
- Department
of Physics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
12
|
Machado MR, González HC, Pantano S. MD Simulations of Viruslike Particles with Supra CG Solvation Affordable to Desktop Computers. J Chem Theory Comput 2017; 13:5106-5116. [DOI: 10.1021/acs.jctc.7b00659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matı́as R. Machado
- Biomolecular Simulations
Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo CP 11400, Uruguay
| | - Humberto C. González
- Biomolecular Simulations
Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo CP 11400, Uruguay
| | - Sergio Pantano
- Biomolecular Simulations
Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo CP 11400, Uruguay
| |
Collapse
|
13
|
Omelyan I, Kovalenko A. MTS-MD of Biomolecules Steered with 3D-RISM-KH Mean Solvation Forces Accelerated with Generalized Solvation Force Extrapolation. J Chem Theory Comput 2016; 11:1875-95. [PMID: 26574393 DOI: 10.1021/ct5010438] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We developed a generalized solvation force extrapolation (GSFE) approach to speed up multiple time step molecular dynamics (MTS-MD) of biomolecules steered with mean solvation forces obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model with the Kovalenko-Hirata closure). GSFE is based on a set of techniques including the non-Eckart-like transformation of coordinate space separately for each solute atom, extension of the force-coordinate pair basis set followed by selection of the best subset, balancing the normal equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nosé-Hoover chain (OIN) thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1-4 ps while accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of conformational sampling for these systems, compared to conventional MD with explicit solvent. We have been able to fold the miniprotein from a fully denatured, extended state in about 60 ns of quasidynamics steered with 3D-RISM-KH mean solvation forces, compared to the average physical folding time of 4-9 μs observed in experiment.
Collapse
Affiliation(s)
- Igor Omelyan
- Department of Mechanical Engineering, University of Alberta , Mechanical Engineering Building 4-9, Edmonton, Alberta T6G 2G8, Canada.,National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada.,Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine , 1 Svientsitskii Street, Lviv 79011, Ukraine
| | - Andriy Kovalenko
- Department of Mechanical Engineering, University of Alberta , Mechanical Engineering Building 4-9, Edmonton, Alberta T6G 2G8, Canada.,National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| |
Collapse
|
14
|
SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling. J Comput Aided Mol Des 2016; 30:1115-1127. [PMID: 27585474 DOI: 10.1007/s10822-016-9947-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022]
Abstract
Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.
Collapse
|
15
|
Cao S, Sheong FK, Huang X. Reference interaction site model with hydrophobicity induced density inhomogeneity: An analytical theory to compute solvation properties of large hydrophobic solutes in the mixture of polyatomic solvent molecules. J Chem Phys 2015; 143:054110. [DOI: 10.1063/1.4928051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Siqin Cao
- The HKUST Shenzhen Research Institute, Shenzhen, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Fu Kit Sheong
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuhui Huang
- The HKUST Shenzhen Research Institute, Shenzhen, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Division of Biomedical Engineering, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
16
|
Ratkova EL, Palmer DS, Fedorov MV. Solvation thermodynamics of organic molecules by the molecular integral equation theory: approaching chemical accuracy. Chem Rev 2015; 115:6312-56. [PMID: 26073187 DOI: 10.1021/cr5000283] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ekaterina L Ratkova
- †G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Street 1, Ivanovo 153045, Russia.,‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany
| | - David S Palmer
- ‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany.,§Department of Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland G1 1XL, United Kingdom
| | - Maxim V Fedorov
- ‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany.,∥Department of Physics, Scottish Universities Physics Alliance (SUPA), University of Strathclyde, John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
17
|
Decherchi S, Masetti M, Vyalov I, Rocchia W. Implicit solvent methods for free energy estimation. Eur J Med Chem 2014; 91:27-42. [PMID: 25193298 DOI: 10.1016/j.ejmech.2014.08.064] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 12/12/2022]
Abstract
Solvation is a fundamental contribution in many biological processes and especially in molecular binding. Its estimation can be performed by means of several computational approaches. The aim of this review is to give an overview of existing theories and methods to estimate solvent effects giving a specific focus on the category of implicit solvent models and their use in Molecular Dynamics. In many of these models, the solvent is considered as a continuum homogenous medium, while the solute can be represented at the atomic detail and at different levels of theory. Despite their degree of approximation, implicit methods are still widely employed due to their trade-off between accuracy and efficiency. Their derivation is rooted in the statistical mechanics and integral equations disciplines, some of the related details being provided here. Finally, methods that combine implicit solvent models and molecular dynamics simulation, are briefly described.
Collapse
Affiliation(s)
- Sergio Decherchi
- CONCEPT Lab, D3 Computation, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Ivan Vyalov
- CONCEPT Lab, D3 Computation, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Walter Rocchia
- CONCEPT Lab, D3 Computation, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|