1
|
Melnyk R, Trokhymchuk A, Baumketner A. Excluded volume of the system of hard-core spheres revisited: New insights from computer simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Di Credico B, Odriozola G, Mascotto S, Meyer A, Tripaldi L, Moncho-Jordá A. Controlling the anisotropic self-assembly of polybutadiene-grafted silica nanoparticles by tuning three-body interaction forces. SOFT MATTER 2022; 18:8034-8045. [PMID: 36226549 DOI: 10.1039/d2sm00943a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, the significant improvements in polymer composites properties have been mainly attributed to the ability of filler nanoparticles (NPs) to self-assemble into highly anisotropic self-assembled structures. In this work, we investigate the self-assembly of core-shell NPs composed of a silica core grafted with polybutadiene (PB) chains, generating the so-called "hairy" NPs (HNPs), immersed in tetrahydrofuran solvent. While uncoated silica beads aggregate forming uniform compact structures, the presence of a PB shell affects the silica NPs organization to the point that by increasing the polymer density at the corona, they tend to self-assemble into linear chain-like structures. To reproduce the experimental observations, we propose a theoretical model for the two-body that considers the van der Waals attractive energy together with the polymer-induced repulsive steric contribution and includes an additional three-body interaction term. This term arises due to the anisotropic distribution of PB, which increases their concentration near the NPs contact region. The resulting steric repulsion experienced by a third NP approaching the dimer prevents its binding close to the dimer bond and favors the growth of chain-like structures. We find good agreement between the simulated and experimental self-assembled superstructures, confirming that this three-body steric repulsion plays a key role in determining the cluster morphology of these core-shell NPs. The model also shows that further increasing the grafting density leads to low-density gel-like open structures.
Collapse
Affiliation(s)
- Barbara Di Credico
- Department of Materials Science, INSTM, University of Milano-Bicocca, Via R. Cozzi, 55, 20125 Milano, Italy.
| | - Gerardo Odriozola
- Área de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, 02200 Ciudad de México, Mexico
| | - Simone Mascotto
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Andreas Meyer
- Institut für Physikalische Chemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Laura Tripaldi
- Department of Materials Science, INSTM, University of Milano-Bicocca, Via R. Cozzi, 55, 20125 Milano, Italy.
| | - Arturo Moncho-Jordá
- Institute Carlos I for Theoretical and Computational Physics, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071, Granada, Spain.
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| |
Collapse
|
3
|
Melnyk R, Kalyuzhnyi Y, Kahl G, Baumketner A. Liquid–gas critical point of a two-dimensional system of hard ellipses with attractive wells. J Chem Phys 2022; 156:034102. [DOI: 10.1063/5.0072522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- R. Melnyk
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsistsky Str., Lviv UA-79011, Ukraine
| | - Y. Kalyuzhnyi
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsistsky Str., Lviv UA-79011, Ukraine
| | - G. Kahl
- Institute for Theoretical Physics and Center for Computational Materials Science (CMS), TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Wien, Austria
| | - A. Baumketner
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsistsky Str., Lviv UA-79011, Ukraine
| |
Collapse
|
4
|
Gómez de Santiago M, Gurin P, Varga S, Odriozola G. Extended law of corresponding states: square-well oblates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:104002. [PMID: 34874295 DOI: 10.1088/1361-648x/ac3fd8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
The vapour-liquid coexistence collapse in the reduced temperature,Tr=T/Tc, reduced density,ρr=ρ/ρc, plane is known as a principle of corresponding states, and Noro and Frenkel have extended it for pair potentials of variable range. Here, we provide a theoretical basis supporting this extension, and show that it can also be applied to short-range pair potentials where both repulsive and attractive parts can be anisotropic. We observe that the binodals of oblate hard ellipsoids for a given aspect ratio (κ= 1/3) with varying short-range square-well interactions collapse into a single master curve in theΔB2*-ρrplane, whereΔB2*=(B2(T)-B2(Tc))/v0,B2is the second virial coefficient, andv0is the volume of the hard body. This finding is confirmed by both REMC simulation and second virial perturbation theory for varying square-well shells, mimicking uniform, equator, and pole attractions. Our simulation results reveal that the extended law of corresponding states is not related to the local structure of the fluid.
Collapse
Affiliation(s)
- Miguel Gómez de Santiago
- Área de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, 02200 Ciudad de México, Mexico
| | - Péter Gurin
- Physics Department, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, PO Box 158, Veszprém H-8201, Hungary
| | - Szabolcs Varga
- Physics Department, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, PO Box 158, Veszprém H-8201, Hungary
| | - Gerardo Odriozola
- Área de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, 02200 Ciudad de México, Mexico
| |
Collapse
|
5
|
Teixeira PIC, Sciortino F. Patchy particles at a hard wall: Orientation-dependent bonding. J Chem Phys 2019; 151:174903. [DOI: 10.1063/1.5124008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- P. I. C. Teixeira
- ISEL – Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, P-1959-007 Lisbon, Portugal and Centro de Física Teórica e Computacional, Faculdade de Ciências da Universidade de Lisboa Campo Grande, Edifício C8, P-1749-016 Lisbon, Portugal
| | - F. Sciortino
- Dipartimento di Fisica and CNR-ISC, Università di Roma La Sapienza, Piazzale Moro 5, I-00185 Rome, Italy
| |
Collapse
|
6
|
Li ZW, Zhu YL, Lu ZY, Sun ZY. General patchy ellipsoidal particle model for the aggregation behaviors of shape- and/or surface-anisotropic building blocks. SOFT MATTER 2018; 14:7625-7633. [PMID: 30152819 DOI: 10.1039/c8sm01631c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a general patchy ellipsoidal particle model suitable for conducting dynamics simulations of the aggregation behaviors of various shape- and/or surface-anisotropic colloids, especially patchy ellipsoids with continuously variable shape and tunable patchiness. To achieve higher computational efficiency in dynamics simulations, we employ a multi-GPU acceleration technique based on a domain decomposition algorithm. The validation and performance evaluation of this GPU-assisted model are performed by simulating several typical benchmark systems of non-patchy and patchy ellipsoids. Given the generality and efficiency of our GPU-assisted patchy ellipsoidal particle model, it will provide a highly feasible dynamics simulation framework to investigate the aggregation behaviors of anisotropic soft matter systems comprised of shape- and/or surface-anisotropic building blocks.
Collapse
Affiliation(s)
- Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | | | | | |
Collapse
|
7
|
Hatch HW, Mahynski NA, Murphy RP, Blanco MA, Shen VK. Monte Carlo simulation of cylinders with short-range attractions. AIP ADVANCES 2018; 8:095210. [PMID: 32855837 PMCID: PMC7448613 DOI: 10.1063/1.5040252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/03/2018] [Indexed: 05/21/2023]
Abstract
Cylindrical or rod-like particles are promising materials for the applications of fillers in nanocomposite materials and additives to control rheological properties of colloidal suspensions. Recent advances in particle synthesis allows for cylinders to be manufactured with short-ranged attractions to study the gelation as a function of packing fraction, aspect ratio and attraction strength. In order to aid in the analysis of small-angle scattering experiments of rod-like particles, computer simulation methods were used to model these particles with specialized Monte Carlo algorithms and tabular superquadric potentials. The attractive interaction between neighboring rods increases with the amount of locally-accessible surface area, thus leading to patchy-like interactions. We characterize the clustering and percolation of cylinders as the attractive interaction increases from the homogenous fluid at relatively low attraction strength, for a variety of aspect ratios and packing fractions. Comparisons with the experimental scattering results are also presented, which are in agreement.
Collapse
Affiliation(s)
- Harold W. Hatch
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Nathan A. Mahynski
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Ryan P. Murphy
- Center for Neutron Science and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Marco A. Blanco
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
| | - Vincent K. Shen
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| |
Collapse
|
8
|
|
9
|
Carpency TN, Gunton JD, Rickman JM. Phase behavior of patchy spheroidal fluids. J Chem Phys 2016; 145:214904. [DOI: 10.1063/1.4969074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- T. N. Carpency
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - J. D. Gunton
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - J. M. Rickman
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
10
|
Oleksy A, Teixeira PIC. Liquid-vapor interfaces of patchy colloids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:012301. [PMID: 25679617 DOI: 10.1103/physreve.91.012301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 06/04/2023]
Abstract
We investigate the liquid-vapor interface of a model of patchy colloids. This model consists of hard spheres decorated with short-ranged attractive sites ("patches") of different types on their surfaces. We focus on a one-component fluid with two patches of type A and nine patches of type B (2A9B colloids), which has been found to exhibit reentrant liquid-vapor coexistence curves and very low-density liquid phases. We have used the density-functional theory form of Wertheim's first-order perturbation theory of association, as implemented by Yu and Wu [J. Chem. Phys. 116, 7094 (2002)], to calculate the surface tension, and the density and degree of association profiles, at the liquid-vapor interface of our model. In reentrant systems, where AB bonds dominate, an unusual thickening of the interface is observed at low temperatures. Furthermore, the surface tension versus temperature curve reaches a maximum, in agreement with Bernardino and Telo da Gama's mesoscopic Landau-Safran theory [Phys. Rev. Lett. 109, 116103 (2012)]. If BB attractions are also present, competition between AB and BB bonds gradually restores the monotonic temperature dependence of the surface tension. Lastly, the interface is "hairy," i.e., it contains a region where the average chain length is close to that in the bulk liquid, but where the density is that of the vapor. Sufficiently strong BB attractions remove these features, and the system reverts to the behavior seen in atomic fluids.
Collapse
Affiliation(s)
- A Oleksy
- Centro de Física Teórica e Computacional, Faculdade de Ciências da Universidade de Lisboa, Avenida Professor Gama Pinto 2, P-1649-003 Lisbon, Portugal
| | - P I C Teixeira
- Centro de Física Teórica e Computacional, Faculdade de Ciências da Universidade de Lisboa, Avenida Professor Gama Pinto 2, P-1649-003 Lisbon, Portugal and Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro 1, P-1950-062 Lisbon, Portugal
| |
Collapse
|