1
|
Eraković M, Cvitaš MT. Tunnelling splitting patterns in some partially deuterated water trimers. Phys Chem Chem Phys 2021; 23:4240-4254. [PMID: 33586727 DOI: 10.1039/d0cp06135b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We apply our recently developed semiclassical method for calculating tunnelling splittings (TS) in asymmetric systems to make the first characterization of the ground-state TS pattern of some partially deuterated water trimers. Similarly to homoisotopic water trimers, the ground-state TS patterns are explained in terms of six distinct rearrangement mechanisms. TS patterns in (D2O)(H2O)2 and (H2O)(D2O)2 are composed of sextets induced by the dynamics of flips, and each of its levels is further finely split into a quartet of doublets and a doublet of quartets, respectively, due to various bifurcation dynamics. The TS pattern is obtained using 18 distinct tunnelling matrix elements. TS patterns of (HOD)(H2O)2 and (HOD)(D2O)2 each consists of two sextets, belonging to in-bond and out-of-bond substituted isomers. These sextet levels are further split into quartets by bifurcations. The TS pattern is computed in terms of 13 matrix elements. We also derive analytic expressions for bifurcation tunnelling splittings in terms of tunnelling matrix elements using symmetry. The present approach can be applied to other water clusters and also to the low-lying vibrationally excited states and should help in the interpretation and assignment of experimental spectra in the future.
Collapse
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia.
| | - Marko T Cvitaš
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Eraković M, Cvitaš MT. Tunneling splittings of vibrationally excited states using general instanton paths. J Chem Phys 2020; 153:134106. [PMID: 33032414 DOI: 10.1063/5.0024210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A multidimensional semiclassical method for calculating tunneling splittings in vibrationally excited states of molecules using Cartesian coordinates is developed. It is an extension of the theory by Mil'nikov and Nakamura [J. Chem. Phys. 122, 124311 (2005)] to asymmetric paths that are necessary for calculating tunneling splitting patterns in multi-well systems, such as water clusters. Additionally, new terms are introduced in the description of the semiclassical wavefunction that drastically improves the splitting estimates for certain systems. The method is based on the instanton theory and builds the semiclassical wavefunction of the vibrationally excited states from the ground-state instanton wavefunction along the minimum action path and its harmonic neighborhood. The splittings of excited states are thus obtained at a negligible added numerical effort. The cost is concentrated, as for the ground-state splittings, in the instanton path optimization and the hessian evaluation along the path. The method can thus be applied without modification to many mid-sized molecules in full dimensionality and in combination with on-the-fly evaluation of electronic potentials. The tests were performed on several model potentials and on the water dimer.
Collapse
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry, Ruder Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Marko T Cvitaš
- Department of Physical Chemistry, Ruder Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Ootani Y, Satoh A, Harabuchi Y, Taketsugu T. Trajectory on-the-fly molecular dynamics approach to tunneling splitting in the electronic excited state: A case of tropolone. J Comput Chem 2020; 41:1549-1556. [PMID: 32239685 DOI: 10.1002/jcc.26199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 11/10/2022]
Abstract
The semiclassical tunneling method is applied to evaluate the tunneling splitting of tropolone due to the intramolecular proton transfer in the electronic excited state, first time, in a framework of the trajectory on-the-fly molecular dynamics (TOF-MD) approach. To prevent unphysical zero-point vibrational energy transfer among the normal modes of vibration, quantum zero-point vibrational energies are assigned only to the vibrational modes related to intramolecular proton transfer, whereas the remaining modes are treated as bath modes. Practical ways to determine the tunnel-initiating points and tunneling path are introduced. It is shown that the tunneling splitting decreases as the bath-mode energy increases. The experimental tunneling splitting value is well reproduced by the present TOF-MD approach based on the Wentzel-Kramers-Brillouin (WKB) approximation.
Collapse
Affiliation(s)
- Yusuke Ootani
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Aya Satoh
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Yu Harabuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Eraković M, Vaillant CL, Cvitaš MT. Instanton theory of ground-state tunneling splittings with general paths. J Chem Phys 2020; 152:084111. [PMID: 32113369 DOI: 10.1063/1.5145278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a multidimensional instanton theory for calculating ground-state tunneling splittings in Cartesian coordinates for general paths. It is an extension of the method by Mil'nikov and Nakamura [J. Chem. Phys. 115, 6881 (2001)] to include asymmetric paths that are necessary for calculating tunneling splitting patterns in multi-well systems, such as water clusters. The approach avoids multiple expensive matrix diagonalizations to converge the fluctuation prefactor in the ring-polymer instanton (RPI) method, and instead replaces them by an integration of a Riccati differential equation. When combined with the string method for locating instantons, we avoid the need to converge the calculation with respect to the imaginary time period of the semiclassical orbit, thereby reducing the number of convergence parameters of the optimized object to just one: the number of equally spaced system replicas used to represent the instanton path. The entirety of the numerical effort is thus concentrated in optimizing the shape of the path and evaluating hessians along the path, which is a dramatic improvement over RPI. In addition to the standard instanton approximations, we neglect the coupling of vibrational modes to external rotations. The method is tested on the model potential of malonaldehyde and on the water dimer and trimer, giving close agreement with RPI at a much-reduced cost.
Collapse
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry, Rudđđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Christophe L Vaillant
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Marko T Cvitaš
- Department of Physical Chemistry, Rudđđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
|
6
|
Cvitaš MT. Quadratic String Method for Locating Instantons in Tunneling Splitting Calculations. J Chem Theory Comput 2018; 14:1487-1500. [DOI: 10.1021/acs.jctc.7b00881] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marko T. Cvitaš
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Cvitaš MT, Althorpe SC. Locating Instantons in Calculations of Tunneling Splittings: The Test Case of Malonaldehyde. J Chem Theory Comput 2016; 12:787-803. [PMID: 26756608 DOI: 10.1021/acs.jctc.5b01073] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recently developed ring-polymer instanton (RPI) method [J. Chem. Phys. 2011, 134, 054109] is an efficient technique for calculating approximate tunneling splittings in high-dimensional molecular systems. The key step is locating the instanton tunneling-path at zero temperature. Here, we show that techniques previously designed for locating instantons in finite-temperature rate calculations can be adapted to the RPI method, where they become extremely efficient, reducing the number of potential energy calls by 2 orders of magnitude. We investigate one technique that employs variable time steps to minimize the action integral, and two that employ equally spaced position steps to minimize the abbreviated (i.e., Jacobi) action integral, using respectively the nudged elastic band (NEB) and string methods. We recommend use of the latter because it is parameter-free, but all three methods give comparable efficiency savings. Having located the instanton pathway, we then interpolate the instanton path onto a fine grid of imaginary time points, allowing us to compute the fluctuation prefactor. The crucial modification needed to the original finite-temperature algorithms is to allow the end points of the zero-temperature instanton path to describe overall rotations, which is done using a standard quaternion algorithm. These approaches will allow the RPI method to be combined effectively with expensive potential energy surfaces or on-the-fly electronic structure methods.
Collapse
Affiliation(s)
- Marko T Cvitaš
- Department of Physical Chemistry, Ruđer Bošković Institute , Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Stuart C Althorpe
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Richardson JO. Ring-polymer instanton theory of electron transfer in the nonadiabatic limit. J Chem Phys 2015; 143:134116. [DOI: 10.1063/1.4932362] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jeremy O. Richardson
- Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstraße 7/B2, 91058 Erlangen, Germany
| |
Collapse
|
9
|
Hele TJH, Suleimanov YV. Should thermostatted ring polymer molecular dynamics be used to calculate thermal reaction rates? J Chem Phys 2015; 143:074107. [DOI: 10.1063/1.4928599] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Timothy J. H. Hele
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yury V. Suleimanov
- Computation-based Science and Technology Research Center, Cyprus Institute, 20 Kavafi St., Nicosia 2121, Cyprus
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| |
Collapse
|
10
|
Isotope effects of ammonia umbrella flip using semiclassical instanton calculations based on discretized path integrals. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.05.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Wang W, Zhao Y. The direct and precursor mediated dissociation rates of H2 on a Ni(111) surface. Phys Chem Chem Phys 2015; 17:5901-12. [PMID: 25630487 DOI: 10.1039/c4cp05624h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dissociation and recombination rates of physisorbed H2, and the direct and steady state dissociation (i.e., the precursor mediated dissociation) rates of gas phase H2 on Ni(111), as well as the corresponding kinetic isotope effects, are calculated using the quantum instanton method, together with path integral Monte Carlo and adaptive umbrella sampling techniques. All these rates except the recombination one first decrease and then increase with the increasing temperature, and their minimum values appear at about 250, 300 and 250 K, respectively. These non-monotonic behaviors reveal that the quantum effect of H2 should be very remarkable at low temperatures. The steady state rates are smaller than the direct rates at low temperatures, however, they become larger than the direct ones at high temperatures, these two kinds of rates become equal at about 400 and 300 K on the rigid and quantum lattices, respectively. The quantum motion of the lattice can enhance the direct and steady state rates, and it increases the steady state rate much more than the direct one, for instance, the direct and steady state rates on the quantum lattice are 1.30 and 2.08 times larger than that on the rigid one at 300 K. The calculated kinetic isotope effects are much larger than 1, which reveals that H2 always has a larger rate than that of D2, and the direct process predicts much larger kinetic isotope effects than the steady state process at low temperatures. In addition, the kinetic isotope effects are not affected by the lattice motion.
Collapse
Affiliation(s)
- Wenji Wang
- College of Science, Northwest A&F University, Yangling, 712100, Shaanxi Province, P. R. China.
| | | |
Collapse
|
12
|
Kawatsu T, Miura S. The isotope effects on a hydrogen transfer using path integral instanton method. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.951641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|