1
|
Colla T, Telles IM, Arfan M, Dos Santos AP, Levin Y. Spiers Memorial Lecture: Towards understanding of iontronic systems: electroosmotic flow of monovalent and divalent electrolyte through charged cylindrical nanopores. Faraday Discuss 2023; 246:11-46. [PMID: 37395363 DOI: 10.1039/d3fd00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In many practical applications, ions are the primary charge carrier and must move through either semipermeable membranes or through pores, which mimic ion channels in biological systems. In analogy to electronic devices, the "iontronic" ones use electric fields to induce the charge motion. However, unlike the electrons that move through a conductor, motion of ions is usually associated with simultaneous solvent flow. A study of electroosmotic flow through narrow pores is an outstanding challenge that lies at the interface of non-equilibrium statistical mechanics and fluid dynamics. In this paper, we will review recent works that use dissipative particle dynamics simulations to tackle this difficult problem. We will also present a classical density functional theory (DFT) based on the hypernetted-chain approximation (HNC), which allows us to calculate the velocity of electroosmotic flows inside nanopores containing 1 : 1 or 2 : 1 electrolyte solution. The theoretical results will be compared with simulations. In simulations, the electrostatic interactions are treated using the recently introduced pseudo-1D Ewald summation method. The zeta potentials calculated from the location of the shear plane of a pure solvent are found to agree reasonably well with the Smoluchowski equation. However, the quantitative structure of the fluid velocity profiles deviates significantly from the predictions of the Smoluchowski equation in the case of charged pores with 2 : 1 electrolyte. For low to moderate surface charge densities, the DFT allows us to accurately calculate the electrostatic potential profiles and the zeta potentials inside the nanopores. For pores with 1 : 1 electrolyte, the agreement between theory and simulation is particularly good for large ions, for which steric effects dominate over the ionic electrostatic correlations. The electroosmotic flow is found to depend very strongly on the ionic radii. In the case of pores containing 2 : 1 electrolyte, we observe a reentrant transition in which the electroosmotic flow first reverses and then returns to normal as the surface change density of the pore is increased.
Collapse
Affiliation(s)
- Thiago Colla
- Instituto de Física, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil.
| | - Igor M Telles
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, Porto Alegre, RS, CEP 91501-970, Brazil.
| | - Muhammad Arfan
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, Porto Alegre, RS, CEP 91501-970, Brazil.
| | - Alexandre P Dos Santos
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, Porto Alegre, RS, CEP 91501-970, Brazil.
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, Porto Alegre, RS, CEP 91501-970, Brazil.
| |
Collapse
|
2
|
Colla T, Mohanty PS, Nöjd S, Bialik E, Riede A, Schurtenberger P, Likos CN. Self-Assembly of Ionic Microgels Driven by an Alternating Electric Field: Theory, Simulations, and Experiments. ACS NANO 2018; 12:4321-4337. [PMID: 29634232 DOI: 10.1021/acsnano.7b08843] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The structural properties of a system of ionic microgels under the influence of an alternating electric field are investigated both theoretically and experimentally. This combined investigation aims to shed light on the structural transitions that can be induced by changing either the driving frequency or the strength of the applied field, which range from string-like formation along the field to crystal-like structures across the orthogonal plane. In order to highlight the physical mechanisms responsible for the observed particle self-assembly, we develop a coarse-grained description, in which effective interactions among the charged microgels are induced by both equilibrium ionic distributions and their time-averaged hydrodynamic responses to the applied field. These contributions are modeled by the buildup of an effective dipole moment at the microgels backbones, which is partially screened by their ionic double layer. We show that this description is able to capture the structural properties of this system, allowing for very good agreement with the experimental results. The model coarse-graining parameters are indirectly obtained via the measured pair distribution functions and then further assigned with a clear physical interpretation, allowing us to highlight the main physical mechanisms accounting for the observed self-assembly behavior.
Collapse
Affiliation(s)
- Thiago Colla
- Instituto de Física , Universidade Federal de Ouro Preto , CEP 35400-000 Ouro Preto , Minas Gerais , Brazil
- Faculty of Physics , University of Vienna , Boltzmanngasse 5 , 1090 Vienna , Austria
| | - Priti S Mohanty
- Division of Physical Chemistry , Lund University , SE-221 00 Lund , Sweden
- School of Chemical Technology , Kalinga Institute of Industrial Technology (KIIT) , Bhubaneswar 751024 , India
| | - Sofi Nöjd
- Division of Physical Chemistry , Lund University , SE-221 00 Lund , Sweden
| | - Erik Bialik
- Division of Physical Chemistry , Lund University , SE-221 00 Lund , Sweden
| | - Aaron Riede
- Division of Physical Chemistry , Lund University , SE-221 00 Lund , Sweden
| | | | - Christos N Likos
- Faculty of Physics , University of Vienna , Boltzmanngasse 5 , 1090 Vienna , Austria
| |
Collapse
|
3
|
Ash B, Chakrabarti J, Ghosal A. Static and dynamic properties of two-dimensional Coulomb clusters. Phys Rev E 2018; 96:042105. [PMID: 29347627 DOI: 10.1103/physreve.96.042105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Indexed: 11/07/2022]
Abstract
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.
Collapse
Affiliation(s)
- Biswarup Ash
- Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - J Chakrabarti
- S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098, India
| | - Amit Ghosal
- Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
4
|
Affiliation(s)
- Thiago Colla
- Faculty of Physics, University of Vienna , Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Christos N. Likos
- Faculty of Physics, University of Vienna , Boltzmanngasse 5, A-1090 Vienna, Austria
| |
Collapse
|
5
|
Girotto M, dos Santos AP, Pakter R, Levin Y. Reply to "Comment on 'Vortex distribution in a confining potential' ". PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:026102. [PMID: 25215853 DOI: 10.1103/physreve.90.026102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Indexed: 06/03/2023]
Abstract
We argue that contrary to recent suggestions, nonextensive statistical mechanics has no relevance for inhomogeneous systems of particles interacting by short-range potentials. We show that these systems are perfectly well described by the usual Boltzmann-Gibbs statistical mechanics.
Collapse
Affiliation(s)
- Matheus Girotto
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Alexandre P dos Santos
- Departamento de Educação e Informação em Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, 90050-170, Porto Alegre, RS, Brazil. and Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Renato Pakter
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|