1
|
Baerends EJ, Aguirre NF, Austin ND, Autschbach J, Bickelhaupt FM, Bulo R, Cappelli C, van Duin ACT, Egidi F, Fonseca Guerra C, Förster A, Franchini M, Goumans TPM, Heine T, Hellström M, Jacob CR, Jensen L, Krykunov M, van Lenthe E, Michalak A, Mitoraj MM, Neugebauer J, Nicu VP, Philipsen P, Ramanantoanina H, Rüger R, Schreckenbach G, Stener M, Swart M, Thijssen JM, Trnka T, Visscher L, Yakovlev A, van Gisbergen S. The Amsterdam Modeling Suite. J Chem Phys 2025; 162:162501. [PMID: 40260801 DOI: 10.1063/5.0258496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
In this paper, we present the Amsterdam Modeling Suite (AMS), a comprehensive software platform designed to support advanced molecular and materials simulations across a wide range of chemical and physical systems. AMS integrates cutting-edge quantum chemical methods, including Density Functional Theory (DFT) and time-dependent DFT, with molecular mechanics, fluid thermodynamics, machine learning techniques, and more, to enable multi-scale modeling of complex chemical systems. Its design philosophy allows for seamless coupling between components, facilitating simulations that range from small molecules to complex biomolecular and solid-state systems, making it a versatile tool for tackling interdisciplinary challenges, both in industry and in academia. The suite also emphasizes user accessibility, with an intuitive graphical interface, extensive scripting capabilities, and compatibility with high-performance computing environments.
Collapse
Affiliation(s)
- Evert Jan Baerends
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Nestor F Aguirre
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Nick D Austin
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo State University of New York, Buffalo, New York 14260-3000, USA
| | - F Matthias Bickelhaupt
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Rosa Bulo
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- IMT School for Advanced Studies Lucca, Piazza San Francesco 19, I-55100 Lucca, Italy
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Franco Egidi
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Célia Fonseca Guerra
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Arno Förster
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Mirko Franchini
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Theodorus P M Goumans
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstraße 66c, 01069 Dresden, Germany
| | - Matti Hellström
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, USA
| | - Mykhaylo Krykunov
- Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, P.O. Box 145748, Abu Dhabi, United Arab Emirates
| | - Erik van Lenthe
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Artur Michalak
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Mariusz M Mitoraj
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Johannes Neugebauer
- Universität Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstraße 36, 48149 Münster, Germany
| | | | - Pier Philipsen
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Harry Ramanantoanina
- Department Chemie, Johannes Gutenberg-Universität, Fritz-Strassmann Weg 2, 55128 Mainz, Germany
| | - Robert Rüger
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Marcel Swart
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- IQCC and Department Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| | - Jos M Thijssen
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Tomáš Trnka
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lucas Visscher
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Alexei Yakovlev
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Stan van Gisbergen
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Yuan H, Russier-Antoine I, Moulin C, Brevet PF, Sanader Maršić Ž, Perić Bakulić M, Kang X, Antoine R, Zhu M. Record-high hyperpolarizabilities in atomically precise single metal-doped silver nanoclusters. NANOSCALE HORIZONS 2025; 10:314-321. [PMID: 39648688 DOI: 10.1039/d4nh00454j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Recent developments in optical imaging techniques, particularly multi-photon excitation microscopy that allows studies of biological interactions at a deep cellular level, have motivated intensive research in developing multi-photon absorption fluorophores. Biological tissues are optically transparent in the near-infrared region. Therefore, fluorophores that can absorb light in the near-infrared (NIR) region by multi-photon absorption are particularly useful in bio-imaging. For instance, photoluminescence from ligand-protected gold nanoclusters has drawn extensive research interest in the past decade due to their bright, non-blinking, stable emission and tunability from the blue to the NIR emission. In this work, using the control of single metal doping on silver nanoclusters (Ag25 protected by thiolate SR = 2,4-dimethylbenzenethiol (DMBT) ligand), we aim to explore the effects of metal doping on the (photo)stability and nonlinear optical response of liganded nanoclusters. We study two-photon excited photoluminescence and the second harmonic response upon excitation in the NIR (780-950 nm) range. Particular emphasis is placed on the effect of metal doping on the second-order nonlinear optical scattering properties (first hyperpolarizability, β(2ω)) of Ag25 nanoclusters. In addition, β(2ω) values are one order higher than the one reported for Au25 nanoclusters and represent the largest values ever reported for ligand-protected nanoclusters. Such enhanced hyperpolarizability leads to a strong second harmonic response and renders them attractive targets in bioimaging.
Collapse
Affiliation(s)
- Hao Yuan
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Isabelle Russier-Antoine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Christophe Moulin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Pierre-François Brevet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Željka Sanader Maršić
- Faculty of Science, University of Split, Ruđera Boškovića 33, Split 21000, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), University of Split, Ruđera Boškovića 33, Split 21000, Croatia.
| | - Martina Perić Bakulić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), University of Split, Ruđera Boškovića 33, Split 21000, Croatia.
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, Split 21000, Croatia
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.
| | - Rodolphe Antoine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
3
|
Grotjahn R, Furche F. Gauge-Invariant Excited-State Linear and Quadratic Response Properties within the Meta-Generalized Gradient Approximation. J Chem Theory Comput 2023. [PMID: 37399786 DOI: 10.1021/acs.jctc.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Gauge invariance is a fundamental symmetry connected to charge conservation and is widely accepted as indispensable for any electronic structure method. Hence, the gauge variance of the time-dependent kinetic energy density τ used in many meta-generalized gradient approximations (MGGAs) to the exchange-correlation (XC) functional presents a major obstacle for applying MGGAs within time-dependent density functional theory (TDDFT). Replacing τ by the gauge-invariant generalized kinetic energy density τ̂ significantly improves the accuracy of various functionals for vertical excitation energies [R. Grotjahn, F. Furche, and M. Kaupp. J. Chem. Phys. 2022, 157, 111102]. However, the dependence of the resulting current-MGGAs (cMGGAs) on the paramagnetic current density gives rise to new exchange-correlation kernels and hyper-kernels ignored in previous implementations of quadratic and higher-order response properties. Here we report the first implementation of cMGGAs and hybrid cMGGAs for excited-state gradients and dipole moments, as well as an extension to quadratic response properties including dynamic hyperpolarizabilities and two-photon absorption cross sections. In the first comprehensive benchmark study of MGGAs and cMGGAs for two-photon absorption cross sections, the M06-2X functional is found to be superior to the GGA hybrid PBE0. Additionally, two case studies from the literature for the practical prediction of nonlinear optical properties are revisited and potential advantages of hybrid (c)MGGAs compared to hybrid GGAs are discussed. The effect of restoring gauge invariance varies depending on the employed MGGA functional, the type of excitation, and the property under investigation: While some individual excited-state equilibrium structures are significantly affected, on average, these changes result in marginal improvements when compared against high-level reference data. Although the gauge-variant MGGA quadratic response properties are generally close to their gauge-invariant counterparts, the resulting errors are not bounded and significantly exceed typical method errors in some of the cases studied. Despite the limited effects seen in benchmark studies, gauge-invariant implementations of cMGGAs for excited-state properties are desirable from a fundamental perspective, entail little additional computational cost, and are necessary for response properties consistent with cMGGA linear response calculations such as excitation energies.
Collapse
Affiliation(s)
- Robin Grotjahn
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
4
|
Exhibiting environment sensitive optical properties through multiscale modelling: A study of photoactivatable probes. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Gam S, Messaoudi S, Halet JF, Boucekkine A. How do structural factors determine the linear and non-linear optical properties of fluorene-containing quadrupolar fluorophores? A theoretical answer. NEW J CHEM 2022. [DOI: 10.1039/d2nj01192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The linear and non-linear optical properties of the different components of a series of push–push and pull–pull quadrupolar fluorophore derivatives are investigated.
Collapse
Affiliation(s)
- Safa Gam
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) – UMR 6226, F35000 Rennes, France
- Faculty of Sciences of Bizerte FSB, University of Carthage, 7021 Jarzouna, Tunisia
- Laboratory of Materials, Molecules and Applications, IPEST, University of Carthage, Sidi Bou Said Road, B.P. 51, 2070 La Marsa, Tunisia
| | - Sabri Messaoudi
- Faculty of Sciences of Bizerte FSB, University of Carthage, 7021 Jarzouna, Tunisia
- Laboratory of Materials, Molecules and Applications, IPEST, University of Carthage, Sidi Bou Said Road, B.P. 51, 2070 La Marsa, Tunisia
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Jean-François Halet
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) – UMR 6226, F35000 Rennes, France
- CNRS – Saint-Gobain – NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| | - Abdou Boucekkine
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) – UMR 6226, F35000 Rennes, France
| |
Collapse
|
6
|
Harshan AK, Bronson MJ, Jensen L. Local-Field Effects in Linear Response Properties within a Polarizable Frozen Density Embedding Method. J Chem Theory Comput 2021; 18:380-393. [PMID: 34905917 DOI: 10.1021/acs.jctc.1c00816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, we present a polarizable frozen density embedding (FDE) method for calculating polarizabilities of coupled subsystems. The method (FDE-pol) combines a FDE method with an explicit polarization model such that the expensive freeze/thaw cycles can be bypassed, and approximate nonadditive kinetic potentials are avoided by enforcing external orthogonality between the subsystems. To describe the polarization of the frozen environment, we introduce a Hirshfeld partition-based density-dependent method for calculating the atomic polarizabilities of atoms in molecules, which alleviates the need to fit the atomic parameters to a specific system of interest or to a larger general set of molecules. We show that the Hirshfeld partition-based method predicts molecular polarizabilities close to the basis set limit, and thus, a single basis set-dependent scaling parameter can be introduced to improve the agreement against the reference polarizability data. To test the model, we characterized the uncoupled and coupled response of small interacting molecular complexes. Here, the coupled response properties include the perturbation of the frozen system due to the external perturbation which is ignored in the uncoupled response. We show that FDE-pol can accurately reproduce both the exact uncoupled polarizability and the coupled polarizabilities of the supermolecular systems. Using damped response theory, we also demonstrate that the coupled frequency-dependent polarizability can be described by including local field effects. The results emphasize the necessity of including local-field effects for describing the response properties of coupled subsystems, as well as the importance of accurate atomic polarizability models.
Collapse
Affiliation(s)
- Aparna K Harshan
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park 16802, United States
| | - Mark J Bronson
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park 16802, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park 16802, United States
| |
Collapse
|
7
|
Lu S, Wang B. The role of distributed atomic point charges and polarizabilities of solvent molecules on one‐ and two‐photon absorption spectra of aqueous
p
‐nitroaniline. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shih‐I Lu
- Department of Chemistry Soochow University Taipei City Taiwan
| | - Bo‐Cheng Wang
- Department of Chemistry Tamkang University New Taipei City Taiwan
| |
Collapse
|
8
|
Osella S, Paloncýová M, Sahi M, Knippenberg S. Influence of Membrane Phase on the Optical Properties of DPH. Molecules 2020; 25:E4264. [PMID: 32957614 PMCID: PMC7570797 DOI: 10.3390/molecules25184264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022] Open
Abstract
The fluorescent molecule diphenylhexatriene (DPH) has been often used in combination with fluorescence anisotropy measurements, yet little is known regarding the non-linear optical properties. In the current work, we focus on them and extend the application to fluorescence, while paying attention to the conformational versatility of DPH when it is embedded in different membrane phases. Extensive hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the influence of the phase- and temperature-dependent lipid environment on the probe. Already, the transition dipole moments and one-photon absorption spectra obtained in the liquid ordered mixture of sphingomyelin (SM)-cholesterol (Chol) (2:1) differ largely from the ones calculated in the liquid disordered DOPC and solid gel DPPC membranes. Throughout the work, the molecular conformation in SM:Chol is found to differ from the other environments. The two-photon absorption spectra and the ones obtained by hyper-Rayleigh scattering depend strongly on the environment. Finally, a stringent comparison of the fluorescence anisotropy decay and the fluorescence lifetime confirm the use of DPH to gain information upon the surrounding lipids and lipid phases. DPH might thus open the possibility to detect and analyze different biological environments based on its absorption and emission properties.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Markéta Paloncýová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic;
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden;
| | - Maryam Sahi
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden;
| | - Stefan Knippenberg
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic;
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden;
- Theory Lab, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
9
|
Osella S, Knippenberg S. Laurdan as a Molecular Rotor in Biological Environments. ACS APPLIED BIO MATERIALS 2019; 2:5769-5778. [DOI: 10.1021/acsabm.9b00789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Stefan Knippenberg
- RCPTM, Department of Physical Chemistry, Fac. Sciences, Palacký University, 771 46 Olomouc, Czech Republic
- Theoretical Physics, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
10
|
|
11
|
Osella S, Di Meo F, Murugan NA, Fabre G, Ameloot M, Trouillas P, Knippenberg S. Combining (Non)linear Optical and Fluorescence Analysis of DiD To Enhance Lipid Phase Recognition. J Chem Theory Comput 2018; 14:5350-5359. [DOI: 10.1021/acs.jctc.8b00553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Silvio Osella
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Florent Di Meo
- Faculty of Pharmacy, UMR 1248 INSERM, Limoges University, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - N. Arul Murugan
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Gabin Fabre
- LCSN-EA1069, Faculty of Pharmacy, Limoges University, 2, rue du Dr. Marcland, 87025 Limoges Cedex, France
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Patrick Trouillas
- Faculty of Pharmacy, UMR 1248 INSERM, Limoges University, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
- Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Stefan Knippenberg
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, SE-10691 Stockholm, Sweden
- Biomedical Research Institute, Hasselt University, B-3590, Diepenbeek, Belgium
| |
Collapse
|
12
|
Parker SM, Rappoport D, Furche F. Quadratic Response Properties from TDDFT: Trials and Tribulations. J Chem Theory Comput 2017; 14:807-819. [DOI: 10.1021/acs.jctc.7b01008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shane M. Parker
- Department
of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Dmitrij Rappoport
- Department
of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
- Department
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Filipp Furche
- Department
of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
13
|
Hu Z, Jensen L. Importance of double-resonance effects in two-photon absorption properties of Au 25(SR) 18. Chem Sci 2017. [PMID: 28626569 PMCID: PMC5471455 DOI: 10.1039/c7sc00968b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We show that double-resonance effects for Au25(SR)18– are less pronounced and do not lead to significantly enhanced two-photon absorption cross-sections.
The two-photon absorption (TPA) cross-sections of small thiolate-protected gold clusters have been shown to be much larger than typical small organic molecules. In comparison with larger nanoparticles, their TPA cross-sections per gold atom are also found to be larger. Theoretical simulations have suggested that the large enhancement of these TPA cross-sections comes from a one-photon double-resonance mechanism. However, it remains difficult to simulate TPA cross-sections of thiolate-protected gold clusters due to their large system size and a high density of states. In this work, we report a time-dependent density functional theory (TDDFT) study of the TPA spectra of the Au25(SR)18– cluster based on a damped response theory formalism. Damped response theory enables a consistent treatment of on- and off-resonance molecular properties even for molecules with a high density of states, and thus is well-suited for studying the TPA properties of gold clusters. Our results indicate that the one- and two-photon double-resonance effect is much smaller than previously found, and thus is unlikely to be the main cause of the large TPA cross-sections found experimentally. The effect of symmetry breaking of the Au25(SR)18– cluster due to the ligands on the TPA cross-sections has been studied and was found to only slightly increase the cross-section. Furthermore, by comparing with larger nanoparticles we find that the TPA cross-section per gold atom scales linearly with the diameter of the particles, and that the Kerr non-linear response of the Au25(SR)18– cluster is on the same order as that of bulk gold films.
Collapse
Affiliation(s)
- Zhongwei Hu
- Department of Chemistry , The Pennsylvania State University , 104 Chemistry Building , University Park , Pennsylvania 16802 , USA .
| | - Lasse Jensen
- Department of Chemistry , The Pennsylvania State University , 104 Chemistry Building , University Park , Pennsylvania 16802 , USA .
| |
Collapse
|
14
|
Hu Z, Chulhai DV, Jensen L. Simulating Surface-Enhanced Hyper-Raman Scattering Using Atomistic Electrodynamics-Quantum Mechanical Models. J Chem Theory Comput 2016; 12:5968-5978. [DOI: 10.1021/acs.jctc.6b00940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhongwei Hu
- Department
of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, 16802, United States
| | - Dhabih V. Chulhai
- Department
of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, 16802, United States
| | - Lasse Jensen
- Department
of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, 16802, United States
| |
Collapse
|
15
|
Hu Z, Autschbach J, Jensen L. Simulating Third-Order Nonlinear Optical Properties Using Damped Cubic Response Theory within Time-Dependent Density Functional Theory. J Chem Theory Comput 2016; 12:1294-304. [DOI: 10.1021/acs.jctc.5b01060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhongwei Hu
- Department
of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802-4615, United States
| | - Jochen Autschbach
- Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Lasse Jensen
- Department
of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802-4615, United States
| |
Collapse
|
16
|
Kwasnieski DT, Wang H, Schultz ZD. Alkyl-Nitrile Adlayers as Probes of Plasmonically Induced Electric Fields. Chem Sci 2015; 6:4484-4494. [PMID: 26213606 PMCID: PMC4511604 DOI: 10.1039/c5sc01265a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/04/2015] [Indexed: 01/27/2023] Open
Abstract
Vibrational Stark shifts observed from mercaptoalkyl monolayers on surface enhanced Raman (SERS) active materials are reported to provide a direct measurement of the local electric field around plasmonic nanostructures. Adlayers of CN-, p-mercaptobenzonitrile, and n-mercaptobutylnitrile were adsorbed to a heterogeneous nanostructured Ag surface. The frequency of the CN moiety was observed to shift in a correlated fashion with the SERS intensity. These shifts are attributed to a vibrational Stark shift arising from rectification of the optical field, which gives rise to a DC potential on the surface. All three molecules showed CN Stark shifts on the plasmonic surfaces. P-mercaptobenzonitrile is observed to be a well-behaved probe of the electric field, providing a narrow spectral line, suggesting a more uniform orientation on the surface. The utility of p-mercaptobenzonitrile was demonstrated by successfully assessing the electric field between gold nanoparticles adsorbed to a monolayer of the nitrile on a flat gold surface. A model is presented where the Stark shift of the alkyl-nitrile probe can be correlated to optical field, providing an intensity independent measurement of the local electric field environment.
Collapse
Affiliation(s)
- Daniel T. Kwasnieski
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA .
| | - Hao Wang
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA .
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA .
| |
Collapse
|