1
|
Sarkar R, Singh RK, Roy S. Hierarchical Hydration Dynamics of RNA with Nano-Water-Pool at Its Core. J Phys Chem B 2023; 127:6903-6919. [PMID: 37506269 DOI: 10.1021/acs.jpcb.3c03553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Many functional RNAs fold into a compact, roughly globular shape by minimizing the electrostatic repulsion between their negatively charged phosphodiester backbone. The fold of such close, compact RNA architecture is often so designed that its outer surface and complex core both are predominately populated by phosphate groups loosely sequestering bases in the intermediate layers. A number of helical junctions maintain the RNA core and its nano-water-pool. While the folding of RNA is manifested by its counterion environment composed of mixed mono- and divalent salts, the concerted role of ion and water in maintaining an RNA fold is yet to be explored. In this work, detailed atomistic simulations of SAM-I and Add Adenine riboswitch aptamers, and subgenomic flavivirus RNA (sfRNA) have been performed in a physiological mixed mono- and divalent salt environment. All three RNA systems have compact folds with a core diameter of range 1-1.7 nm. The spatiotemporal heterogeneity of RNA hydration was probed in a layer-wise manner by distinguishing the core, the intermediate, and the outer layers. The layer-wise decomposition of hydrogen bonds and collective single-particle reorientational dynamics reveal a nonmonotonic relaxation pattern with the slowest relaxation observed at the intermediate layers that involves functionally important tertiary motifs. The slowness of this intermediate layer is attributed to two types of long-resident water molecules: (i) water from ion-hydration layers and (ii) structurally trapped water (distant from ions). The relaxation kinetics of the core and the surface water essentially exposed to the phosphate groups show well-separated time scales from the intermediate layers. In the slow intermediate layers, site-specific ions and water control the functional dynamics of important RNA motifs like kink-turn, observed in different structure-probing experiments. Most interestingly, we find that as the size of the RNA core increases (SAM1 core < sfRNAcore < Add adenine core), its hydration tends to show faster relaxation. The hierarchical hydration and the layer-wise base-phosphate composition uniquely portray the globular RNA to act like a soft vesicle with a quasi-dynamic nano-water-pool at its core.
Collapse
Affiliation(s)
- Raju Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Rishabh K Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
2
|
Nishida K, Anada T, Tanaka M. Roles of interfacial water states on advanced biomedical material design. Adv Drug Deliv Rev 2022; 186:114310. [PMID: 35487283 DOI: 10.1016/j.addr.2022.114310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
When biomedical materials come into contact with body fluids, the first reaction that occurs on the material surface is hydration; proteins are then adsorbed and denatured on the hydrated material surface. The amount and degree of denaturation of adsorbed proteins affect subsequent cell behavior, including cell adhesion, migration, proliferation, and differentiation. Biomolecules are important for understanding the interactions and biological reactions of biomedical materials to elucidate the role of hydration in biomedical materials and their interaction partners. Analysis of the water states of hydrated materials is complicated and remains controversial; however, knowledge about interfacial water is useful for the design and development of advanced biomaterials. Herein, we summarize recent findings on the hydration of synthetic polymers, supramolecular materials, inorganic materials, proteins, and lipid membranes. Furthermore, we present recent advances in our understanding of the classification of interfacial water and advanced polymer biomaterials, based on the intermediate water concept.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Japan(1)
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Morón M. Protein hydration shell formation: Dynamics of water in biological systems exhibiting nanoscopic cavities. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Chakravorty A, Pandey S, Pahari S, Zhao S, Alexov E. Capturing the Effects of Explicit Waters in Implicit Electrostatics Modeling: Qualitative Justification of Gaussian-Based Dielectric Models in DelPhi. J Chem Inf Model 2020; 60:2229-2246. [PMID: 32155062 PMCID: PMC9883665 DOI: 10.1021/acs.jcim.0c00151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our group has implemented a smooth Gaussian-based dielectric function in DelPhi (J. Chem. Theory Comput. 2013, 9 (4), 2126-2136) which models the solute as an object with inhomogeneous dielectric permittivity and provides a smooth transition of dielectric permittivity from surface-bound water to bulk solvent. Although it is well-understood that the protein hydrophobic core is less polarizable than the hydrophilic protein surface, less attention is paid to the polarizability of water molecules inside the solute and on its surface. Here, we apply explicit water simulations to study the behavior of water molecules buried inside a protein and on the surface of that protein and contrast it with the behavior of the bulk water. We selected a protein that is experimentally shown to have five cavities, most of which are occupied by water molecules. We demonstrate through molecular dynamics (MD) simulations that the behavior of water in the cavity is drastically different from that in the bulk. These observations were made by comparing the mean residence times, dipole orientation relaxation times, and average dipole moment fluctuations. We also show that the bulk region has a nonuniform distribution of these tempo-spatial properties. From the perspective of continuum electrostatics, we argue that the dielectric "constant" in water-filled cavities of proteins and the space close to the molecular surface should differ from that assigned to the bulk water. This provides support for the Gaussian-based smooth dielectric model for solving electrostatics in the Poisson-Boltzmann equation framework. Furthermore, we demonstrate that using a well-parametrized Gaussian-based model with a single energy-minimized configuration of a protein can also reproduce its ensemble-averaged polar solvation energy. Thus, we argue that the Gaussian-based smooth dielectric model not only captures accurate physics but also provides an efficient way of computing ensemble-averaged quantities.
Collapse
Affiliation(s)
- Arghya Chakravorty
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States,Corresponding Authors:,
| | - Shailesh Pandey
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Swagata Pahari
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Shan Zhao
- Department of Mathematics, University of Alabama, Tuscaloosa, Alabama 35487, Unites States
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States,Corresponding Authors:,
| |
Collapse
|
5
|
Abstract
Proteins interact with their aqueous surroundings, thereby modifying the physical properties of the solvent. The extent of this perturbation has been investigated by numerous methods in the past half-century, but a consensus has still not emerged regarding the spatial range of the perturbation. To a large extent, the disparate views found in the current literature can be traced to the lack of a rigorous definition of the perturbation range. Stating that a particular solvent property differs from its bulk value at a certain distance from the protein is not particularly helpful since such findings depend on the sensitivity and precision of the technique used to probe the system. What is needed is a well-defined decay length, an intrinsic property of the protein in a dilute aqueous solution, that specifies the length scale on which a given physical property approaches its bulk-water value. Based on molecular dynamics simulations of four small globular proteins, we present such an analysis of the structural and dynamic properties of the hydrogen-bonded solvent network. The results demonstrate unequivocally that the solvent perturbation is short-ranged, with all investigated properties having exponential decay lengths of less than one hydration shell. The short range of the perturbation is a consequence of the high energy density of bulk water, rendering this solvent highly resistant to structural perturbations. The electric field from the protein, which under certain conditions can be long-ranged, induces a weak alignment of water dipoles, which, however, is merely the linear dielectric response of bulk water and, therefore, should not be thought of as a structural perturbation. By decomposing the first hydration shell into polarity-based subsets, we find that the hydration structure of the nonpolar parts of the protein surface is similar to that of small nonpolar solutes. For all four examined proteins, the mean number of water-water hydrogen bonds in the nonpolar subset is within 1% of the value in bulk water, suggesting that the fragmentation and topography of the nonpolar protein-water interface has evolved to minimize the propensity for protein aggregation by reducing the unfavorable free energy of hydrophobic hydration.
Collapse
Affiliation(s)
- Filip Persson
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Pär Söderhjelm
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Bertil Halle
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
6
|
Mukherjee S, Mondal S, Bagchi B. Distinguishing dynamical features of water inside protein hydration layer: Distribution reveals what is hidden behind the average. J Chem Phys 2018; 147:024901. [PMID: 28711050 DOI: 10.1063/1.4990693] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Since the pioneering works of Pethig, Grant, and Wüthrich on a protein hydration layer, many studies have been devoted to find out if there are any "general and universal" characteristic features that can distinguish water molecules inside the protein hydration layer from bulk. Given that the surface itself varies from protein to protein, and that each surface facing the water is heterogeneous, search for universal features has been elusive. Here, we perform an atomistic molecular dynamics simulation in order to propose and demonstrate that such defining characteristics can emerge if we look not at average properties but the distribution of relaxation times. We present results of calculations of distributions of residence times and rotational relaxation times for four different protein-water systems and compare them with the same quantities in the bulk. The distributions in the hydration layer are unusually broad and log-normal in nature due to the simultaneous presence of peptide backbones that form weak hydrogen bonds, hydrophobic amino acid side chains that form no hydrogen bond, and charged polar groups that form a strong hydrogen bond with the surrounding water molecules. The broad distribution is responsible for the non-exponential dielectric response and also agrees with large specific heat of the hydration water. Our calculations reveal that while the average time constant is just about 2-3 times larger than that of bulk water, it provides a poor representation of the real behaviour. In particular, the average leads to the erroneous conclusion that water in the hydration layer is bulk-like. However, the observed and calculated lower value of static dielectric constant of hydration layer remained difficult to reconcile with the broad distribution observed in dynamical properties. We offer a plausible explanation of these unique properties.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
7
|
Mondal S, Mukherjee S, Bagchi B. Origin of diverse time scales in the protein hydration layer solvation dynamics: A simulation study. J Chem Phys 2018; 147:154901. [PMID: 29055291 DOI: 10.1063/1.4995420] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to inquire the microscopic origin of observed multiple time scales in solvation dynamics, we carry out several computer experiments. We perform atomistic molecular dynamics simulations on three protein-water systems, namely, lysozyme, myoglobin, and sweet protein monellin. In these experiments, we mutate the charges of the neighbouring amino acid side chains of certain natural probes (tryptophan) and also freeze the side chain motions. In order to distinguish between different contributions, we decompose the total solvation energy response in terms of various components present in the system. This allows us to capture the interplay among different self- and cross-energy correlation terms. Freezing the protein motions removes the slowest component that results from side chain fluctuations, but a part of slowness remains. This leads to the conclusion that the slow component approximately in the 20-80 ps range arises from slow water molecules present in the hydration layer. While the more than 100 ps component has multiple origins, namely, adjacent charges in amino acid side chains, hydrogen bonded water molecules and a dynamically coupled motion between side chain and water. In addition, the charges enforce a structural ordering of nearby water molecules and helps to form a local long-lived hydrogen bonded network. Further separation of the spatial and temporal responses in solvation dynamics reveals different roles of hydration and bulk water. We find that the hydration layer water molecules are largely responsible for the slow component, whereas the initial ultrafast decay arises predominantly (approximately 80%) due to the bulk. This agrees with earlier theoretical observations. We also attempt to rationalise our results with the help of a molecular hydrodynamic theory that was developed using classical time dependent density functional theory in a semi-quantitative manner.
Collapse
Affiliation(s)
- Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - Saumyak Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
8
|
Yamamoto N, Ito S, Nakanishi M, Chatani E, Inoue K, Kandori H, Tominaga K. Effect of Temperature and Hydration Level on Purple Membrane Dynamics Studied Using Broadband Dielectric Spectroscopy from Sub-GHz to THz Regions. J Phys Chem B 2018; 122:1367-1377. [PMID: 29304273 DOI: 10.1021/acs.jpcb.7b10077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To investigate the effects of temperature and hydration on the dynamics of purple membrane (PM), we measured the broadband complex dielectric spectra from 0.5 GHz to 2.3 THz using a vector network analyzer and terahertz time-domain spectroscopy from 233 to 293 K. In the lower temperature region down to 83 K, the complex dielectric spectra in the THz region were also obtained. The complex dielectric spectra were analyzed through curve fitting using several model functions. We found that the hydrated states of one relaxational mode, which was assigned as the coupled motion of water molecules with the PM surface, began to overlap with the THz region at approximately 230 K. On the other hand, the relaxational mode was not observed for the dehydrated state. On the basis of this result, we conclude that the protein-dynamical-transition-like behavior in the THz region is due to the onset of the overlap of the relaxational mode with the THz region. Temperature hysteresis was observed in the dielectric spectrum at 263 K when the hydration level was high. It is suggested that the hydration water behaves similarly to supercooled liquid at that temperature. The third hydration layer may be partly formed to observe such a phenomenon. We also found that the relaxation time is slower than that of a globular protein, lysozyme, and the microscopic environment in the vicinity of the PM surface is suggested to be more heterogeneous than lysozyme. It is proposed that the spectral overlap of the relaxational mode and the low-frequency vibrational mode is necessary for the large conformational change of protein.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Graduate School of Science, Kobe University , 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan
| | - Shota Ito
- Graduate School of Engineering, Nagoya Institute of Technology , Gokisho-cho, Shouwa-ku, Nagoya, 466-8555, Japan
| | - Masahiro Nakanishi
- Department of Electrical Engineering, Fukuoka Institute of Technology , 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka, 811-0295, Japan
| | - Eri Chatani
- Graduate School of Science, Kobe University , 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan
| | - Keiichi Inoue
- Graduate School of Engineering, Nagoya Institute of Technology , Gokisho-cho, Shouwa-ku, Nagoya, 466-8555, Japan
| | - Hideki Kandori
- Graduate School of Engineering, Nagoya Institute of Technology , Gokisho-cho, Shouwa-ku, Nagoya, 466-8555, Japan
| | - Keisuke Tominaga
- Graduate School of Science, Kobe University , 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan.,Molecular Photoscience Research Center, Kobe University , 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
9
|
Biswas R, Bagchi B. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:013001. [PMID: 29205175 DOI: 10.1088/1361-648x/aa9b1d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the same due to interaction with the surfaces.
Collapse
|
10
|
Molecular mechanisms of action of sphingomyelin-specific pore-forming toxin, lysenin. Semin Cell Dev Biol 2018; 73:188-198. [DOI: 10.1016/j.semcdb.2017.07.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/21/2022]
|
11
|
Daskalakis V, Papadatos S. The Photosystem II Subunit S under Stress. Biophys J 2018; 113:2364-2372. [PMID: 29211990 DOI: 10.1016/j.bpj.2017.09.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/29/2017] [Accepted: 09/29/2017] [Indexed: 01/08/2023] Open
Abstract
Nonphotochemical quenching is the protective mechanism against overexcitation of photosystem II, triggered by excess ΔpH in photosynthetic membranes. The light-harvesting complexes (LHCs), the de-epoxidation of violaxanthin to zeaxanthin, and the photosystem II subunit S (PsbS) work in synergy for an optimized multilevel response. Understanding the fine details of this synergy has proven challenging to scientific research. Here, we employ large-scale, all-atom molecular simulations and beyond experimental insight, we proceed a step further in identifying the PsbS dynamics that could possibly be associated with this synergy. For the first time, to our knowledge, we probe the distinct behavior of PsbS under ΔpH that probes the details of the potential dimer-to-monomer transition, and in a violaxanthin/zeaxanthin-rich membrane, at an all-atom resolution. We propose that the lumen-exposed residues, threonine 162 and glutamic acid 173, form stabilizing hydrogen bonds between the PsbS monomers only at high lumen pH, whereas at low pH (excess ΔpH) this interaction is lost, and leads to higher flexibility of the protein and potentially to the dimer-to-monomer transition. Lastly, we discuss how conformational changes under the presence of ΔpH/zeaxanthin are related to the PsbS role in the current nonphotochemical quenching model in the literature. For the latter, we probe a PsbS-monomeric LHCII association. The association is proposed to potentially alter the monomeric LHCII sensitivity to ΔpH by changing the pKa values of interacting LHCII residues. This serves as an example where protonation-ligation events enhance protein-protein interactions fundamental to many life processes.
Collapse
Affiliation(s)
- Vangelis Daskalakis
- Department of Environmental Science and Technology, Cyprus University of Technology, Limassol, Cyprus.
| | - Sotiris Papadatos
- Department of Environmental Science and Technology, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
12
|
Qin Y, Yang Y, Wang L, Zhong D. Dynamics of hydration water and coupled protein sidechains around a polymerase protein surface. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Shiraga K, Ogawa Y, Kondo N. Hydrogen Bond Network of Water around Protein Investigated with Terahertz and Infrared Spectroscopy. Biophys J 2017; 111:2629-2641. [PMID: 28002739 DOI: 10.1016/j.bpj.2016.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/16/2022] Open
Abstract
The dynamical and structural properties of water at protein interfaces were characterized on the basis of the broadband complex dielectric constant (0.25 to 400 THz) of albumin aqueous solutions. Our analysis of the dielectric responses between 0.25 and 12 THz first revealed hydration water with retarded reorientational dynamics extending ∼8.5 Å (corresponding to three to four layers) out from the albumin surface. Second, the number of nonhydrogen-bonded water was decreased in the presence of the albumin solute, indicating protein inhibits the fragmentation of the water hydrogen-bond network. Finally, water molecules at the albumin interface were found to form a distorted hydrogen-bond structure due to topological and energetic disorder of the protein surface. In addition, the intramolecular O-H stretching vibration of water (∼100 THz), which is sensitive to hydrogen-bond environment, pointed to a trend that hydration water has a larger population of strongly hydrogen-bonded water molecules compared with that of bulk water. From these experimental results, we concluded that the "strengthened" water hydrogen bonds at the protein interface dynamically slow down the reorientational motion of water and form the less-defective hydrogen-bond network by inhibiting the fragmentation of water-water hydrogen bonds. Nevertheless, such a strengthened water hydrogen-bond network is composed of heterogeneous hydrogen-bond distances and angles, and thus characterized as structurally "distorted."
Collapse
Affiliation(s)
| | - Yuichi Ogawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoshi Kondo
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Qin Y, Zhang L, Wang L, Zhong D. Observation of the Global Dynamic Collectivity of a Hydration Shell around Apomyoglobin. J Phys Chem Lett 2017; 8:1124-1131. [PMID: 28212034 DOI: 10.1021/acs.jpclett.7b00205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Protein surface hydration is critical to the protein's structural properties and biological activities. However, it is still unknown whether the hydration shell is intrinsically connected and how its fluctuations dynamically interact with protein motion. Here, by selecting five site-specific locations with distinctly different environments around the surface of apomyoglobin, we used a tryptophan scan with femtosecond fluorescence spectroscopy and simultaneously detected hydration water dynamics and tryptophan side-chain relaxations with temperature dependence. We observed two types of relaxations for both interfacial hydration water and the tryptophan side chain. The former is always faster than the latter, and both motions show direct linear correlations with temperature changes, indicating one origin of their motions and hydration water driving of side-chain fluctuations. Significantly, we found the relaxation energy barriers are uniform across the entire protein surface, all less than 20 kJ/mol, strongly suggesting highly extended cooperative water networks and the nature of global dynamic collectivity of the entire hydration shell.
Collapse
Affiliation(s)
- Yangzhong Qin
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Luyuan Zhang
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Lijuan Wang
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Yang J, Wang Y, Wang L, Zhong D. Mapping Hydration Dynamics around a β-Barrel Protein. J Am Chem Soc 2017; 139:4399-4408. [DOI: 10.1021/jacs.6b12463] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jin Yang
- Department of Physics, Department
of Chemistry and Biochemistry, and Programs of Biophysics, Chemical
Physics and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yafang Wang
- Department of Physics, Department
of Chemistry and Biochemistry, and Programs of Biophysics, Chemical
Physics and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lijuan Wang
- Department of Physics, Department
of Chemistry and Biochemistry, and Programs of Biophysics, Chemical
Physics and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dongping Zhong
- Department of Physics, Department
of Chemistry and Biochemistry, and Programs of Biophysics, Chemical
Physics and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Qin Y, Jia M, Yang J, Wang D, Wang L, Xu J, Zhong D. Molecular Origin of Ultrafast Water-Protein Coupled Interactions. J Phys Chem Lett 2016; 7:4171-4177. [PMID: 27700094 DOI: 10.1021/acs.jpclett.6b01954] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The fluctuations of hydration water and the protein are coupled together at the protein surface and often such water-protein dynamic interactions are controlled presumably by hydration water motions. However, direct evidence is scarce and it requires measuring the dynamics of hydration water and protein side chain simultaneously. Here, we use a unique protein with a single tryptophan to directly probe interfacial water and related side chain relaxations with temperature dependence. With systematic mutations to change local chemical identity and structural flexibility, we found that the side chain relaxations are always slower than hydration water motions and the two dynamic processes are linearly correlated with the same energy barriers, indicating the same origin of both relaxations. The charge mutations change the rates of hydration water relaxations but not the relaxation barriers. These results convincingly show that the water-protein relaxations are strongly coupled and the hydration water molecules govern such fluctuations on the picosecond time scales.
Collapse
Affiliation(s)
- Yangzhong Qin
- State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai 200062, China
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai 200062, China
| | - Jin Yang
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Dihao Wang
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Lijuan Wang
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai 200062, China
| | - Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
17
|
Untangling complex dynamics of biological water at protein-water interface. Proc Natl Acad Sci U S A 2016; 113:8355-7. [PMID: 27436905 DOI: 10.1073/pnas.1609312113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Abstract
Protein hydration is essential to its structure, dynamics, and function, but water-protein interactions have not been directly observed in real time at physiological temperature to our awareness. By using a tryptophan scan with femtosecond spectroscopy, we simultaneously measured the hydration water dynamics and protein side-chain motions with temperature dependence. We observed the heterogeneous hydration dynamics around the global protein surface with two types of coupled motions, collective water/side-chain reorientation in a few picoseconds and cooperative water/side-chain restructuring in tens of picoseconds. The ultrafast dynamics in hundreds of femtoseconds is from the outer-layer, bulk-type mobile water molecules in the hydration shell. We also found that the hydration water dynamics are always faster than protein side-chain relaxations but with the same energy barriers, indicating hydration shell fluctuations driving protein side-chain motions on the picosecond time scales and thus elucidating their ultimate relationship.
Collapse
|
19
|
Yamamoto N, Ohta K, Tamura A, Tominaga K. Broadband Dielectric Spectroscopy on Lysozyme in the Sub-Gigahertz to Terahertz Frequency Regions: Effects of Hydration and Thermal Excitation. J Phys Chem B 2016; 120:4743-55. [PMID: 27158918 DOI: 10.1021/acs.jpcb.6b01491] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have performed dielectric spectral measurements of lysozyme in a solid state to understand the effects of hydration and thermal excitation on the low-frequency dynamics of protein. Dielectric measurements were performed under changing hydration conditions at room temperature in the frequency region of 0.5 GHz to 1.8 THz. We also studied the temperature dependence (83 to 293 K) of the complex dielectric spectra in the THz frequency region (0.3 THz to 1.8 THz). Spectral analyses were performed using model functions for the complex dielectric constant. To reproduce the spectra, we found that two relaxational modes and two underdamped modes are necessary together with an ionic conductivity term in the model function. At room temperature, the two relaxational modes have relaxation times of ∼20 ps and ∼100 ps. The faster component has a major spectral intensity and is suggested to be due to coupled water-protein motion. The two underdamped modes are necessary to reproduce the temperature dependence of the spectra in the THz region satisfactorily. The protein dynamical transition is a well-known behavior in the neutron-scattering experiment for proteins, where the atomic mean-square displacement shows a sudden change in the temperature dependence at approximately 200 K, when the samples are hydrated. A similar behavior has also been observed in the temperature dependence of the absorption spectra of protein in the THz frequency region. From our broadband dielectric spectroscopic measurements, we conclude that the increase in the spectral intensities in the THz region at approximately 200 K is due to a spectral blue-shift of the fast relaxational mode.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Graduate School of Science and ‡Molecular Photoscience Research Center, Kobe University , Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Kaoru Ohta
- Graduate School of Science and ‡Molecular Photoscience Research Center, Kobe University , Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Atsuo Tamura
- Graduate School of Science and ‡Molecular Photoscience Research Center, Kobe University , Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Keisuke Tominaga
- Graduate School of Science and ‡Molecular Photoscience Research Center, Kobe University , Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
20
|
Affiliation(s)
- Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
21
|
Noriega R, Finley DT, Haberstroh J, Geissler PL, Francis MB, Ginsberg NS. Manipulating Excited-State Dynamics of Individual Light-Harvesting Chromophores through Restricted Motions in a Hydrated Nanoscale Protein Cavity. J Phys Chem B 2015; 119:6963-73. [PMID: 26035585 DOI: 10.1021/acs.jpcb.5b03784] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Manipulating the photophysical properties of light-absorbing units is a crucial element in the design of biomimetic light-harvesting systems. Using a highly tunable synthetic platform combined with transient absorption and time-resolved fluorescence measurements and molecular dynamics simulations, we interrogate isolated chromophores covalently linked to different positions in the interior of the hydrated nanoscale cavity of a supramolecular protein assembly. We find that, following photoexcitation, the time scales over which these chromophores are solvated, undergo conformational rearrangements, and return to the ground state are highly sensitive to their position within this cavity and are significantly slower than in a bulk aqueous solution. Molecular dynamics simulations reveal the hindered translations and rotations of water molecules within the protein cavity with spatial specificity. The results presented herein show that fully hydrated nanoscale protein cavities are a promising way to mimic the tight protein pockets found in natural light-harvesting complexes. We also show that the interplay between protein, solvent, and chromophores can be used to substantially tune the relaxation processes within artificial light-harvesting assemblies in order to significantly improve the yield of interchromophore energy transfer and extend the range of excitation transport. Our observations have implications for other important, similarly sized bioinspired materials, such as nanoreactors and biocompatible targeted delivery agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Naomi S Ginsberg
- ∇Kavli Energy NanoSciences Institute, Berkeley, California 94720, United States
| |
Collapse
|