1
|
Gossel GH, Lacombe L, Maitra NT. On the numerical solution of the exact factorization equations. J Chem Phys 2019; 150:154112. [PMID: 31005081 DOI: 10.1063/1.5090802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The exact factorization (EF) approach to coupled electron-ion dynamics recasts the time-dependent molecular Schrödinger equation as two coupled equations, one for the nuclear wavefunction and one for the conditional electronic wavefunction. The potentials appearing in these equations have provided insight into non-adiabatic processes, and new practical non-adiabatic dynamics methods have been formulated starting from these equations. Here, we provide a first demonstration of a self-consistent solution of the exact equations, with a preliminary analysis of their stability and convergence properties. The equations have an unprecedented mathematical form, involving a Hamiltonian outside the class of Hermitian Hamiltonians usually encountered in time-propagation, and so the usual numerical methods for time-dependent Schrödinger fail when applied in a straightforward way to the EF equations. We find an approach that enables stable propagation long enough to witness non-adiabatic behavior in a model system before non-trivial instabilities take over. Implications for the development and analysis of EF-based methods are discussed.
Collapse
Affiliation(s)
- Graeme H Gossel
- Department of Physics and Astronomy, Hunter College and the City University of New York, 695 Park Avenue, New York, New York 10065, USA
| | - Lionel Lacombe
- Department of Physics and Astronomy, Hunter College and the City University of New York, 695 Park Avenue, New York, New York 10065, USA
| | - Neepa T Maitra
- Department of Physics and Astronomy, Hunter College and the City University of New York, 695 Park Avenue, New York, New York 10065, USA
| |
Collapse
|
2
|
Gossel GH, Agostini F, Maitra NT. Coupled-Trajectory Mixed Quantum-Classical Algorithm: A Deconstruction. J Chem Theory Comput 2018; 14:4513-4529. [DOI: 10.1021/acs.jctc.8b00449] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Graeme H. Gossel
- Department of Physics and Astronomy, Hunter College and the City University of New York, 695 Park Avenue, New York, New York 10065, United States
| | - Federica Agostini
- Laboratoire de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, 91405 Orsay, France
| | - Neepa T. Maitra
- Department of Physics and Astronomy, Hunter College and the City University of New York, 695 Park Avenue, New York, New York 10065, United States
- The Physics Program and the Chemistry Program of the Graduate Center, City University of New York, 365 Fifth Avenue, New York, United States
| |
Collapse
|
3
|
Peters WK, Tiwari V, Jonas DM. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer. J Chem Phys 2017; 147:194306. [PMID: 29166106 DOI: 10.1063/1.5009762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.
Collapse
Affiliation(s)
- William K Peters
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | - Vivek Tiwari
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | - David M Jonas
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| |
Collapse
|
4
|
|
5
|
Lefebvre R. Factorisation of zero-width resonance wave functions. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1321154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Roland Lefebvre
- Institut des Sciences Moléculaires d’Orsay (ISMO), Université Paris-Sud, CNRS, Université Paris-Saclay , Orsay Cedex, France
- Faculté de Physique, Sorbonne Universités, UPMC Université Paris 06 , Paris, France
| |
Collapse
|
6
|
Abstract
Conical intersections represent critical topological features of potential energy surfaces and open ultrafast nonradiative deactivation channels for photoexcited molecules. In the following, we investigate how this funneling picture is transposed in the eyes of the exact factorization formalism for a 2D model system. The exact factorization of the total molecular wave function leads to the fundamental concept of time-dependent potential energy surface and time-dependent vector potential, whose behavior during a dynamics through a conical intersection has up to now remained unexplored. Despite the fact that these quantities might be viewed as time-dependent generalizations of the adiabatic potential energy surfaces and the nonadiabatic coupling vectors, characteristic quantities appearing in the Born-Oppenheimer framework, we observe that they do not exhibit particular topological features in the region of conical intersection but still reflect the complex dynamics of the nuclear wavepacket.
Collapse
Affiliation(s)
- Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Federica Agostini
- Laboratoire de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay , 91405 Orsay, France
| |
Collapse
|
7
|
Lefebvre R. Factorization and recomposition of molecular wave functions. J Chem Phys 2016; 145:124108. [DOI: 10.1063/1.4963099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Curchod BFE, Agostini F, Gross EKU. An exact factorization perspective on quantum interferences in nonadiabatic dynamics. J Chem Phys 2016; 145:034103. [DOI: 10.1063/1.4958637] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Khosravi E, Abedi A, Maitra NT. Exact Potential Driving the Electron Dynamics in Enhanced Ionization of H(2)(+). PHYSICAL REVIEW LETTERS 2015; 115:263002. [PMID: 26764989 DOI: 10.1103/physrevlett.115.263002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 06/05/2023]
Abstract
It was recently shown that the exact factorization of the electron-nuclear wave function allows the construction of a Schrödinger equation for the electronic system, in which the potential contains exactly the effect of coupling to the nuclear degrees of freedom and any external fields. Here we study the exact potential acting on the electron in charge-resonance enhanced ionization in a model one-dimensional H(2)(+) molecule. We show there can be significant differences between the exact potential and that used in the traditional quasistatic analyses, arising from nonadiabatic coupling to the nuclear system, and that these are crucial to include for accurate simulations of time-resolved ionization dynamics and predictions of the ionization yield.
Collapse
Affiliation(s)
- Elham Khosravi
- Department of Physics and Astronomy, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10065, USA
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco CFM CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72, 20018 San Sebastián, Spain
| | - Ali Abedi
- Department of Physics and Astronomy, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10065, USA
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco CFM CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72, 20018 San Sebastián, Spain
| | - Neepa T Maitra
- Department of Physics and Astronomy, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10065, USA
| |
Collapse
|
10
|
|
11
|
Lefebvre R. Factorized molecular wave functions: Analysis of the nuclear factor. J Chem Phys 2015; 142:214105. [DOI: 10.1063/1.4922207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|