1
|
Karim KE, Barisik M, Bakli C, Kim B. Estimating water transport in carbon nanotubes: a critical review and inclusion of scale effects. Phys Chem Chem Phys 2024; 26:19069-19082. [PMID: 38973497 DOI: 10.1039/d4cp01068j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The quasi-frictionless water flow across graphitic surfaces offers vast opportunities for a wide range of applications from biomedical science to energy. However, the conflicting experimental results impede a clear understanding of the transport mechanism and desired flow control. Existing literature proposes numerous modifications and updated boundary conditions to extend classical hydrodynamic theories for nanoflows, yet a consensus or definitive conclusion remains elusive. This study presents a critical review of the proposed modifications of the pressure driven flow or the Hagen-Poiseuille (HP) equations to estimate the flow enhancement through carbon nanotubes (CNTs). For such a case, we performed (semi-)classical molecular dynamics simulations of water flow in various sizes of CNTs, applied the different forms of boundary definitions from the literature, and derived HP equation models by implementing these modifications. By aggregating seven distinct experimental datasets, we tested various flow enhancement models against our measurements. Our findings indicate that including the interfacial layering-based dynamic slip-definition in the proposed HP equations yields accurate estimations. While considering interfacial viscosity predicts the individual CNT experiments well, using the experimental viscosity yields better estimations of measurements for the water flow enhancement through membranes of CNTs. This critical review testing existing literature demonstrates how to refine continuum fluid mechanics to predict water flow enhancement at the nanoscale providing holistic multiscale modeling.
Collapse
Affiliation(s)
- Kazi Ehsanul Karim
- School of Mechanical Engineering, University of Ulsan, Daehak-ro 93, Namgu, Ulsan 680-749, Republic of Korea.
| | - Murat Barisik
- Department of Mechanical Engineering, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Chirodeep Bakli
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - BoHung Kim
- School of Mechanical Engineering, University of Ulsan, Daehak-ro 93, Namgu, Ulsan 680-749, Republic of Korea.
| |
Collapse
|
2
|
Sahu P, Ali SM. Uniqueness of Nanoscale Confinement for Fast Water Transport: Effect of Nanotube Diameter and Hydrophobicity. J Phys Chem B 2024; 128:222-243. [PMID: 38149848 DOI: 10.1021/acs.jpcb.3c05979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Inspired by the enhanced water permeability of carbon nanotubes (CNTs), molecular dynamics simulations were performed to investigate the transport behavior through nanotubes made of boron nitride (BNNT), silicon carbide (SiC), and silicon nitride (SiN) alongside carbon nanotubes (which have different hydrophobic attributes) considering their implication for reverse osmosis (RO) membranes under different practical environments. According to our findings, not only do CNTs but also other kinds of nanotubes exhibit transition anomalies with increasing diameter. Utilizing the robust two-phase thermodynamic (2PT) methods, the current examinations shed light on thermodynamic origin of favorable water filling of these nanotubes. The results show that regardless of the nanotube material, the filling of water inside small nanopores (d < 10 Å) as well as within pores of diameter larger than 15 Å will always be favored by the entropy of filling. However, the entropic preference for filling nanotubes with a diameter of 10-15 Å depends on the constituent material. In particular, the enhancement in total entropy of confined water was mainly due to the increased rotational freedom of confined water molecules. The thermodynamic origin of water transport was correlated with the structural and fluidic behavior of water inside these nanotubes. The observed data for density, flow, structure correlation functions, water-water coordination, tetrahedral order parameter, hydrogen bonds, and density of states functions quantitatively support the observed entropy behavior. Of critical importance is that the present study demonstrates the effectiveness of RO filtration using nanotubes of boron nitride rather than carbon. Furthermore, it was found that one should avoid the use of silicon nanotubes unless filtration needs to be performed under harsh environments where nanotube of other materials cannot survive. Specifically, the results show that both the structural and dynamic properties of water confined in BNNTs are similar to those of CNT's, and for SiNT it is similar as SiC. Our results show that besides the nanotube material, the chirality index of the nanotube also plays a significant role in determining the structure, dynamics and thermodynamics of confined water molecules.
Collapse
Affiliation(s)
- Pooja Sahu
- Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sk Musharaf Ali
- Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
3
|
Rana R, Ali SM, Maity DK. Structure and dynamics of the Li + ion in water, methanol and acetonitrile solvents: ab initio molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:31382-31395. [PMID: 37961866 DOI: 10.1039/d3cp04403c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Fundamental understanding of the structure and dynamics of the Li+ ion in solution is of utmost importance in different fields of science and technology, especially in the field of ion batteries. In view of this, ab initio molecular dynamics (AIMD) simulations of the LiCl salt in water, methanol and acetonitrile were performed to elucidate structural parameters such as radial distribution function and coordination number, and dynamical properties like diffusion coefficient, limiting ion conductivity and hydrogen bond correlation function. In the present AIMD simulation, one LiCl in water is equivalent to 0.8 M, which is close to the concentration of the lithium salt used in the Li-ion battery. The first sphere of coordination number of the Li+ ion was reaffirmed to be 4. The radial distribution function for different pairs of atoms is seen to be in good agreement with the experimental results. The calculated potential of mean force indicates the stronger interaction of the Li+ ion with methanol over water followed by acetonitrile. The dynamical parameters convey quite high diffusion and limiting ionic conductivity of the Li+ ion in acetonitrile compared to that in water and methanol which has been attributed to the transport of the Li-Cl ion pair in a non-dissociated form in acetonitrile. The AIMD results were found to be in accordance with the experimental findings, i.e. the limiting ion conductivity was found to follow the order acetonitrile > methanol > water. This study shows the importance of atomistic level simulations in evaluating the structural and dynamical parameters and in implementing the results for predicting and synthesizing better next generation solvents for lithium ion batteries (LIBs).
Collapse
Affiliation(s)
- Reman Rana
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Sk Musharaf Ali
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - Dilip K Maity
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
4
|
Bhendale M, Srivastava A, Singh JK. Insights into the Phase Diagram of Pluronic L64 Using Coarse-Grained Molecular Dynamics Simulations. J Phys Chem B 2022; 126:4731-4744. [PMID: 35708274 DOI: 10.1021/acs.jpcb.2c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the concentration-dependent phase diagram of pluronic L64 in aqueous media at 300 and 320 K using coarse-grained (CG) molecular dynamics (MD) simulations. The CG model is derived by adapting the Martini model for nonbonded interactions along with the Boltzmann inversion (BI) of bonded interactions from all-atom (AA) simulations. Our derived CG model successfully captures the experimentally observed micellar-, hexagonal-, lamellar-, and polymer-rich solution phase. The end-to-end distance reveals the conformational change from an open-chain structure in the micellar phase to a folded-chain structure in the lamellar phase, increasing the orientational order. An increase in temperature leads to expulsion of water molecules from the L64 moiety, suggesting an increase in L64 hydrophobicity. Thermodynamic analysis using the two-phase thermodynamics (2PT) method suggests the entropy of the system decreases with increasing L64 concentration and the decrease in free energy (F) with temperature is mainly driven by the entropic factor (-TS). Further, the increase in aggregation number at lower concentrations and self-assembly at very high concentrations is energetically driven, whereas the change from the micellar phase to the lamellar phase with increasing L64 concentration is entropically driven. Our model provides molecular insights into L64 phases which can be further explored to design functionality-based suprastructures for drug delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Mangesh Bhendale
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Arpita Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.,Prescience Insilico Private Limited, Fifth Floor, Novel MSR Building, Marathahalli, Bengaluru, Karnataka 560037, India
| |
Collapse
|
5
|
Recent Advances in Applications of Carbon Nanotubes for Desalination: A Review. NANOMATERIALS 2020; 10:nano10061203. [PMID: 32575642 PMCID: PMC7353087 DOI: 10.3390/nano10061203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022]
Abstract
As a sustainable, cost-effective and energy-efficient method, membranes are becoming a progressively vital technique to solve the problem of the scarcity of freshwater resources. With these critical advantages, carbon nanotubes (CNTs) have great potential for membrane desalination given their high aspect ratio, large surface area, high mechanical strength and chemical robustness. In recent years, the CNT membrane field has progressed enormously with applications in water desalination. The latest theoretical and experimental developments on the desalination of CNT membranes, including vertically aligned CNT (VACNT) membranes, composited CNT membranes, and their applications are timely and comprehensively reviewed in this manuscript. The mechanisms and effects of CNT membranes used in water desalination where they offer the advantages are also examined. Finally, a summary and outlook are further put forward on the scientific opportunities and major technological challenges in this field.
Collapse
|
6
|
Barria-Urenda M, Garate JA. Entropy deepens loading chemical potentials of small alcohols by narrow carbon nanotubes. Phys Chem Chem Phys 2020; 22:22369-22379. [DOI: 10.1039/d0cp03426f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small alcohol confinement within narrow carbon nanotubes has been extensively and systematically studied via rigorous free-energy calculations.
Collapse
|
7
|
Shahbabaei M, Kim D. Exploring fast water permeation through aquaporin-mimicking membranes. Phys Chem Chem Phys 2020; 22:1333-1348. [DOI: 10.1039/c9cp05496k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using molecular dynamics simulations, herein, we illustrate that a bending structure shows different behaviors for fast water transport through aquaporin-mimicking membranes in multilayer graphene and tubular structures.
Collapse
Affiliation(s)
- Majid Shahbabaei
- Department of Mechanical Engineering
- Sogang University
- Seoul 121-742
- Republic of Korea
| | - Daejoong Kim
- Department of Mechanical Engineering
- Sogang University
- Seoul 121-742
- Republic of Korea
| |
Collapse
|
8
|
Sahu P, Musharaf Ali S, Shenoy KT, Mohan S. Nanoscopic insights of saline water in carbon nanotube appended filters using molecular dynamics simulations. Phys Chem Chem Phys 2019; 21:8529-8542. [PMID: 30957831 DOI: 10.1039/c9cp00648f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanotube appended membranes are shown to be very promising due to their ultrafast water transport and very high salt rejection ability. Using classical molecular dynamics, the present study reports the nanoscopic assessment of various molecular events for nanotube-based desalination, which might be useful for nanoscale devices during process operation at the macroscopic scale. The characteristics of water and ion flow are discussed with varied strength of pressure gradient and salt concentration for different scales of confinement. The results revealed that the membranes comprising nanotubes of 1.0-1.1 nm diameter can be optimized for efficient water desalination with more than >95% salt rejection. Furthermore, the anomalies in water flux through nanotubes are linked with the hydration characteristics of ions inside CNTs. The results show the maximum hydration of confined ions inside the nanotubes, which indicated the minimum permeability of water due to freezing effects. Furthermore, the MD results revealed that akin to bulk phases, the mass transport through nanotubes can be linked with the component diffusivity in the medium. It has been demonstrated that not only the diffusivities of water and ions, but even the gradient of water to ion diffusivity might be utilized to predict and explore the experimental observations, which might be helpful in optimizing the operational regime in nanotube-based filtrations. Moreover, the thermodynamic characteristics of the flow are discussed in terms of the entropy of water and ions using the robust two-phase thermodynamic (2PT) method. The results reflect that the entropy of water is linked to the distortion of the hydrogen bond network inside the nanotube confinement, at the nanotube-water interface and at the bulk solution, whereas the entropy of ions seems to be majorly dominated by their oscillation. Also, the interconnection of hydration structure, mass flux and the diffusivity of water and ions along with their thermodynamic origin are discussed.
Collapse
Affiliation(s)
- Pooja Sahu
- Chemical Engineering Division, Bhabha Atomic Research Center, Mumbai, Maharashtra 400085, India.
| | | | | | | |
Collapse
|
9
|
Sahu P, Ali SM. Breakdown of continuum model for water transport and desalination through ultrathin graphene nanopores: insights from molecular dynamics simulations. Phys Chem Chem Phys 2019; 21:21389-21406. [DOI: 10.1039/c9cp04364k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the quest for identifying a graphene membrane for efficient water desalination, molecular dynamics simulations were performed for the pressure-driven flow of salty water across a multilayer graphene membrane.
Collapse
Affiliation(s)
- Pooja Sahu
- Bhabha Atomic Research Center
- Mumbai 400085
- India
- Homi Bhabha National Institute
- Mumbai 400094
| | - Sk. Musharaf Ali
- Bhabha Atomic Research Center
- Mumbai 400085
- India
- Homi Bhabha National Institute
- Mumbai 400094
| |
Collapse
|
10
|
Shahbabaei M, Kim D. Molecular Dynamics Simulation of Water Transport Mechanisms through Nanoporous Boron Nitride and Graphene Multilayers. J Phys Chem B 2017; 121:4137-4144. [PMID: 28335603 DOI: 10.1021/acs.jpcb.6b12757] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, molecular dynamics simulations are used to investigate water transport mechanisms through hourglass-shaped pore structure in nanoporous boron nitride (BN) and graphene multilayers. An increase in water flux is evidenced as the gap between the layers increases, reaching a maximum of 41 and 43 ns-1 at d = 6 Å in BN and graphene multilayers, respectively. Moreover, the BN multilayer exhibits less flux compared to graphene due to large friction force and energy barrier. In BN, the friction force dramatically increases when the layers are strongly stacked (d = 3.5 Å), whereas it would be independent of the layer separation when the layers are sufficiently spaced (d ≥ 5 Å). In contrast, it was shown that the friction force is independent of the layer spacing in graphene. On the other hand, water molecules across the BN exhibits larger energy barriers compared to graphene when the layers are highly spaced at d = 8 Å. Consistent with the result reported for the flux, the axial diffusion coefficient of water molecules in graphene increases with layer spacing, reaching a maximum of 6.8 × 10-5 cm2/s when the layers are spaced at d = 6 Å.
Collapse
Affiliation(s)
- Majid Shahbabaei
- Department of Mechanical Engineering, Sogang University , Seoul 121-742, Republic of Korea
| | - Daejoong Kim
- Department of Mechanical Engineering, Sogang University , Seoul 121-742, Republic of Korea
| |
Collapse
|
11
|
Garate JA, Perez-Acle T. From dimers to collective dipoles: Structure and dynamics of methanol/ethanol partition by narrow carbon nanotubes. J Chem Phys 2016; 144:064105. [PMID: 26874480 DOI: 10.1063/1.4941331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Alcohol partitioning by narrow single-walled carbon nanotubes (SWCNTs) holds the promise for the development of novel nanodevices for diverse applications. Consequently, in this work, the partition of small alcohols by narrow tubes was kinetically and structurally quantified via molecular dynamics simulations. Alcohol partitioning is a fast process in the order of 10 ns for diluted solutions but the axial-diffusivity within SWCNT is greatly diminished being two to three orders of magnitude lower with respect to bulk conditions. Structurally, alcohols form a single-file conformation under confinement and more interestingly, they exhibit a pore-width dependent transition from dipole dimers to a single collective dipole, for both methanol and ethanol. Energetic analyses demonstrate that this transition is the result of a detailed balance between dispersion and electrostatics interactions, with the latter being more pronounced for collective dipoles. This transition fully modifies the reorientational dynamics of the loaded particles, generating stable collective dipoles that could find usage in signal-amplification devices. Overall, the results herein have shown distinct physico-chemical features of confined alcohols and are a further step towards the understanding and development of novel nanofluidics within SWCNTs.
Collapse
Affiliation(s)
- Jose A Garate
- Computational Biology Laboratory, Fundación Ciencia and Vida, Santiago, Chile
| | - Tomas Perez-Acle
- Computational Biology Laboratory, Fundación Ciencia and Vida, Santiago, Chile
| |
Collapse
|
12
|
Liu L, Patey GN. Simulated conduction rates of water through a (6,6) carbon nanotube strongly depend on bulk properties of the model employed. J Chem Phys 2016; 144:184502. [DOI: 10.1063/1.4948485] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- L. Liu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - G. N. Patey
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
13
|
Sahu P, Ali SM. The entropic forces and dynamic integrity of single file water in hydrophobic nanotube confinements. J Chem Phys 2015; 143:184503. [DOI: 10.1063/1.4935373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|