1
|
Hassan MR, Aronow SR, Douglas JF, Starr FW. Collective motion and its connection to the energy landscape in 2D soft crystals. SOFT MATTER 2025. [PMID: 39838913 DOI: 10.1039/d4sm01405g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
We examine the collective motion in computational models of a two-dimensional dusty plasma crystal and a charged colloidal suspension as they approach their respective melting transitions. To unambiguously identify rearrangement events in the crystal, we map the trajectory of configurations from an equilibrium molecular dynamics simulation to the corresponding sequence of configurations of local potential energy minima ("inherent structures"). This inherent structure (IS) trajectory eliminates the ambiguity that arises from localized vibrational motion. We find that the evolution of the IS trajectory in the crystal can be split into comparatively longer-lived ground states and shorter-lived discrete excited states. These discrete excited energy levels are a consequence of discrete numbers of defect clusters in the crystal. We find that the collective rearrangement occurs through different mechanisms: (i) small closed-loop motion in the ground states without the facilitation of defects, and (ii) much larger and complex open-ended particle motions in excited states that are facilitated by clusters of defects. In both cases, clusters of displacing particles can be separated into much smaller groups of replacing particles with a loop-like structure. In contrast to glass-forming liquids, the mass of the rearranging groups grows on heating towards the melting temperature rather than cooling. We find that crystal melting in these systems can be anticipated by the merging of the average time the crystal spends in the ground state with the average time in the excited states.
Collapse
Affiliation(s)
- Md Rakib Hassan
- Physics Department, Wesleyan University, Middletown, CT 06459, USA.
| | - Sam R Aronow
- Physics Department, Wesleyan University, Middletown, CT 06459, USA.
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Francis W Starr
- Physics Department, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
2
|
Douglas JF, Yuan QL, Zhang J, Zhang H, Xu WS. A dynamical system approach to relaxation in glass-forming liquids. SOFT MATTER 2024; 20:9140-9160. [PMID: 39512171 DOI: 10.1039/d4sm00976b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The "classical" thermodynamic and statistical mechanical theories of Gibbs and Boltzmann are both predicated on axiomatic assumptions whose applicability is hard to ascertain. Theoretical objections and an increasing number of observed deviations from these theories have led to sustained efforts to develop an improved mathematical and physical foundation for them, and the search for appropriate extensions that are generally applicable to condensed materials at low temperatures (T) and high material densities where the assumptions of these theories start to become particularly questionable. These theoretical efforts have largely focused on minimal models of condensed material systems, such as the Fermi-Ulam-Pasta-Tsingou model, and other simplified models of condensed materials that are amenable to numerical and analytic treatments and that can serve to illuminate essential features of relaxation processes in condensed materials under conditions approaching integrable dynamics where clear departures from classical thermodynamics and dynamics can be generally expected. These studies indicate an apparently general multi-step relaxation process, corresponding to an initial "fast" relaxation process (termed the fast β-relaxation in the context of cooled liquids), followed by a longer "equipartition time", namely, the α-relaxation time τα in the context of cooled liquids. This relaxation timescale can be enormously longer than the fast β-relaxation time τβ so that τα is the primary parameter governing the rate at which the material comes into equilibrium, and thus is a natural focus of theoretical attention. Since the dynamics of these simplified dynamical systems, originally intended as simplified models of real crystalline materials exhibiting anharmonic interactions, greatly resemble the observed relaxation dynamics of both heated crystals and cooled liquids, we adapt this dynamical system approach to the practical matter of estimating relaxation times in both cooled liquids and crystals at elevated temperatures, which we identify as weakly non-integrable dynamical systems.
Collapse
Affiliation(s)
- Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | - Qi-Lu Yuan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiarui Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
3
|
Yuan QL, Xu X, Douglas JF, Xu WS. Understanding Relaxation in the Kob-Andersen Liquid Based on Entropy, String, Shoving, Localization, and Parabolic Models. J Phys Chem B 2024; 128:10999-11021. [PMID: 39441733 DOI: 10.1021/acs.jpcb.4c04806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We assess the validity of a range of models of glass formation based on molecular dynamics simulation results of the Kob-Andersen (KA) model system under a wide range of constant volume and constant pressure conditions. These models include the Adam-Gibbs model emphasizing configurational entropy, the string model emphasizing collective particle exchange motion, the shoving model emphasizing material elasticity, the localization model emphasizing dynamical free volume, and parabolic models based on the ideas of dynamic facilitation and, alternatively, the hypothesis that glass formation involves an avoided critical point. We demonstrate that these seemingly disparate models all provide a reasonable description of structural relaxation and diffusion data for the KA model system under all simulation conditions considered. Hence, the present study points to some unity in our understanding of the relationship between leading models of glass formation, supporting inferences drawn from previous studies of polymeric glass-forming liquids.
Collapse
Affiliation(s)
- Qi-Lu Yuan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
4
|
Yuan QL, Xu X, Douglas JF, Xu WS. Influence of Density and Pressure on Glass Formation in the Kob-Andersen Model. J Phys Chem B 2024; 128:9889-9904. [PMID: 39352857 DOI: 10.1021/acs.jpcb.4c04721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
We systematically study glass formation in the well-known Kob-Andersen model over a wide range of densities and pressures as a basis for judging the "universality" of glass formation through a comparison to a recent systematic study of model polymeric glass-forming liquids. Our purpose is to establish general characteristics of glass formation, to identify new relations, and to discern which properties of glass-forming liquids are material-specific and which are "universal." To this end, we analyze a number of characteristic properties of glass formation, such as the structural relaxation time, self-diffusion coefficient, viscosity, characteristic temperatures, and fragility. We also consider a suite of properties presumably related to dynamic heterogeneity in an attempt to better understand its relation to structural relaxation. We demonstrate that the glassy dynamics in the Kob-Andersen model exhibit many of the essential trends observed in polymeric glass-forming liquids, pointing to a remarkable "universality" of many aspects of glass formation.
Collapse
Affiliation(s)
- Qi-Lu Yuan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
5
|
Zhang J, Zhang H, Douglas JF. A closer examination of the nature of atomic motion in the interfacial region of crystals upon approaching melting. J Chem Phys 2024; 160:114506. [PMID: 38511662 DOI: 10.1063/5.0197386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Although crystalline materials are often conceptualized as involving a static lattice configuration of particles, it has recently become appreciated that string-like collective particle exchange motion is a ubiquitous and physically important phenomenon in both the melting and interfacial dynamics of crystals. This type of collective motion has been evidenced in melting since early simulations of hard disc melting by Alder et al. [Phys. Rev. Lett. 11(6), 241-243 (1963)], but a general understanding of its origin, along with its impact on melting and the dynamics of crystalline materials, has been rather slow to develop. We explore this phenomenon further by focusing on the interfacial dynamics of a model crystalline Cu material using molecular dynamics simulations where we emphasize the geometrical nature and spatial extent of the atomic trajectories over the timescale that they are caged, and we also quantify string-like collective motion on the timescale of the fast β-relaxation time, τf, i.e., "stringlets." Direct visualization of the atomic trajectories in their cages over the timescale over which the cage persists indicates that they become progressively more anisotropic upon approaching the melting temperature Tm. The stringlets, dominating the large amplitude atomic motion in the fast dynamics regime, are largely localized to the crystal interfacial region and correspond to "excess" modes in the density of states that give rise to a "boson peak." Moreover, interstitial point defects occur in direct association with the stringlets, demonstrating a link between classical defect models of melting and more recent studies of melting emphasizing the role of this kind of collective motion.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jack F Douglas
- Material Measurement Laboratory, Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
6
|
Clark JA, Prabhu VM, Douglas JF. Molecular Dynamics Simulation of the Influence of Temperature and Salt on the Dynamic Hydration Layer in a Model Polyzwitterionic Polymer PAEDAPS. J Phys Chem B 2023; 127:8185-8198. [PMID: 37668318 PMCID: PMC10578162 DOI: 10.1021/acs.jpcb.3c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
We investigate the hydration of poly(3-[2-(acrylamido) ethyldimethylammonio] propanesulfonate) over a range of temperatures in pure water and with the inclusion of 0.1 mol/L NaCl using atomistic molecular dynamics simulation. Drawing on concepts drawn from the field of glass-forming liquids, we use the Debye-Waller parameter () for describing the water mobility gradient around the polybetaine backbone extending to an overall distance ≈18 Å. The water mobility in this layer is defined through the mean-square water molecule displacement at a time on the order of water's β-relaxation time. The brushlike topology of polybetaines leads to two regions in the dynamic hydration layer. The inner region of ≈10.5 Å is explored by pendant group conformational motions, and the outer region of ≈7.5 Å represents an extended layer of reduced water mobility relative to bulk water. The dynamic hydration layer extends far beyond the static hydration layer, adjacent to the polymer.
Collapse
Affiliation(s)
- Jennifer A. Clark
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
7
|
Mahmud GA, Zhang H, Douglas JF. The Dynamics of Metal Nanoparticles on a Supporting Interacting Substrate. J Chem Phys 2022; 157:114505. [DOI: 10.1063/5.0105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The interaction strength of the nanoparticles NPs with the supporting substrate can greatly influence both the rate and selectivity of catalytic reactions, but the origins of these changes in reactivity arising from the combined effects of NP structure and composition, and NP-substrate interaction are currently not well-understood. Since the dynamics of the NPs are implicated in many NP-based catalytic processes, we investigate how the supporting substrate alters the dynamics of representative Cu NPs on a model graphene substrate, and a formal extension of this model in which the interaction strength between the NPs and the substrate is varied. We particularly emphasize how the substrate interaction strength alters the local mobility and potential energy fluctuations in the NP interfacial region, given the potential relevance of such fluctuations to NP reactivity. We find the NP melting temperature Tm progressively shifts downward with an increasing NP-substrate interaction strength, and that this change in NP thermodynamic stability is mirrored by changes in local mobility and potential energy fluctuations in the interfacial region that can be described as "colored noise". Atomic diffusivity D in the "free" and substrate NP interfacial regions is quantified and observed variations are rationalized by the localization model linking D to the mean square atomic displacement on a "caging" timescale on the order of a ps. In summary, we find the supporting substrate strongly modulates the stability and dynamics of supported NPs, effects that have evident practical relevance for understanding changes in NP catalytic behavior derived from the supporting substrate.
Collapse
Affiliation(s)
- Gazi Arif Mahmud
- Chemical and Materials Engineering, University of Alberta, Canada
| | - Hao Zhang
- Chemical and Materials Engineering, University of Alberta, Canada
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, United States of America
| |
Collapse
|
8
|
Mahmud G, Zhang H, Douglas JF. Localization model description of the interfacial dynamics of crystalline Cu and
Cu
64
Zr
36
metallic glass nanoparticles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:33. [PMID: 33728521 DOI: 10.1140/epje/s10189-021-00022-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Many of the special properties of nanoparticles (NPs) and nanomaterials broadly derive from the significant fraction of particles (atoms, molecules or segments of polymeric molecules) in the NP interfacial region in which the interparticle interactions are characteristically highly anharmonic in comparison to the bulk material. This leads to relatively large mean square particle displacements relative to the material interior, often resulting in a strong increase interfacial mobility and reactivity in both crystalline and glass NPs. The 'Debye-Waller factor', or the mean square particle displacement< u 2 > on a ps 'caging' timescale relative to the square of the average interparticle distanceσ 2 , provides an often experimentally accessible measure of the strength of this anharmonic interaction. The Localization Model (LM) of the dynamics of condensed materials relates this thermodynamic property to the structural relaxation timeτ α , determined from the intermediate scattering function, without any free parameters. Moreover, the LM allows for the prediction of the diffusion coefficient D when combined with the 'decoupling' or Fractional Stokes-Einstein relation linkingτ α to D. In the current study, we employed classical molecular dynamics simulation to investigate the structural relaxation and diffusion of modelCu 64 Zr 36 metallic glass and Cu crystalline NPs with different sizes. As with previous studies validating the LM on model bulk and crystalline materials, and for the interfacial dynamics of thin crystalline and metallic glass films, we find the LM model also describes the interfacial dynamics of model crystalline metal (Cu) and metallic glass (Cu 64 Zr 36 ) NPs to a good approximation, further confirming the generality of the model.
Collapse
Affiliation(s)
- Gazi Mahmud
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| | - Jack F Douglas
- Material Measurement Laboratory, Materials Science and Engineering Division, National Institute of Standards and Technology, Maryland, 20899, USA.
| |
Collapse
|
9
|
Annamareddy A, Li Y, Yu L, Voyles PM, Morgan D. Factors correlating to enhanced surface diffusion in metallic glasses. J Chem Phys 2021; 154:104502. [PMID: 33722035 DOI: 10.1063/5.0039078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The enhancement of surface diffusion (DS) over the bulk (DV) in metallic glasses (MGs) is well documented and likely to strongly influence the properties of glasses grown by vapor deposition. Here, we use classical molecular dynamics (MD) simulations to identify different factors influencing the enhancement of surface diffusion in MGs. MGs have a simple atomic structure and belong to the category of moderately fragile glasses that undergo pronounced slowdown of bulk dynamics with cooling close to the glass transition temperature (Tg). We observe that DS exhibits a much more moderate slowdown compared to DV when approaching Tg, and DS/DV at Tg varies by two orders of magnitude among the MGs investigated. We demonstrate that both the surface energy and the fraction of missing bonds for surface atoms show good correlation to DS/DV, implying that the loss of nearest neighbors at the surface directly translates into higher mobility, unlike the behavior of network-bonded and hydrogen-bonded organic glasses. Fragility, a measure of the slowdown of bulk dynamics close to Tg, also correlates to DS/DV, with more fragile systems having larger surface enhancement of mobility. The deviations observed in the fragility-DS/DV relationship are shown to be correlated to the extent of segregation or depletion of the mobile element at the surface. Finally, we explore the relationship between the diffusion pre-exponential factor (D0) and the activation energy (Q) and compare it to a ln(D0)-Q correlation previously established for bulk glasses, demonstrating similar correlations from MD as in the experiments and that the surface and bulk have very similar ln(D0)-Q correlations.
Collapse
Affiliation(s)
- Ajay Annamareddy
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yuhui Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Paul M Voyles
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dane Morgan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
10
|
Zhang H, Wang X, Yu HB, Douglas JF. Fast dynamics in a model metallic glass-forming material. J Chem Phys 2021; 154:084505. [DOI: 10.1063/5.0039162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xinyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hai-Bin Yu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jack F. Douglas
- Material Measurement Laboratory, Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
11
|
Xu WS, Douglas JF, Sun ZY. Polymer Glass Formation: Role of Activation Free Energy, Configurational Entropy, and Collective Motion. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02740] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
12
|
Mahmud G, Zhang H, Douglas JF. Localization model description of the interfacial dynamics of crystalline Cu and Cu 64Zr 36 metallic glass films. J Chem Phys 2020; 153:124508. [PMID: 33003746 DOI: 10.1063/5.0022937] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies of structural relaxation in Cu-Zr metallic glass materials having a range of compositions and over a wide range of temperatures and in crystalline UO2 under superionic conditions have indicated that the localization model (LM) can predict the structural relaxation time τα of these materials from the intermediate scattering function without any free parameters from the particle mean square displacement ⟨r2⟩ at a caging time on the order of ps, i.e., the "Debye-Waller factor" (DWF). In the present work, we test whether this remarkable relation between the "fast" picosecond dynamics and the rate of structural relaxation τα in these model amorphous and crystalline materials can be extended to the prediction of the local interfacial dynamics of model amorphous and crystalline films. Specifically, we simulate the free-standing amorphous Cu64Zr36 and crystalline Cu films and find that the LM provides an excellent parameter-free prediction for τα of the interfacial region. We also show that the Tammann temperature, defining the initial formation of a mobile interfacial layer, can be estimated precisely for both crystalline and glass-forming solid materials from the condition that the DWFs of the interfacial region and the material interior coincide.
Collapse
Affiliation(s)
- Gazi Mahmud
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jack F Douglas
- Material Measurement Laboratory, Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
13
|
Xu WS, Douglas JF, Xia W, Xu X. Investigation of the Temperature Dependence of Activation Volume in Glass-Forming Polymer Melts under Variable Pressure Conditions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F. Douglas
- Material Measurement Laboratory, Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wenjie Xia
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
14
|
Zhang W, Starr FW, Douglas JF. Reconciling computational and experimental trends in the temperature dependence of the interfacial mobility of polymer films. J Chem Phys 2020; 152:124703. [DOI: 10.1063/1.5144262] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wengang Zhang
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
15
|
Wang X, Xu WS, Zhang H, Douglas JF. Universal nature of dynamic heterogeneity in glass-forming liquids: A comparative study of metallic and polymeric glass-forming liquids. J Chem Phys 2019; 151:184503. [PMID: 31731847 DOI: 10.1063/1.5125641] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glass-formation is a ubiquitous phenomenon that is often observed in a broad class of materials ranging from biological matter to commonly encountered synthetic polymer, as well as metallic and inorganic glass-forming (GF) materials. Despite the many regularities in the dynamical properties of GF materials, the structural origin of the universal dynamical properties of these materials has not yet been identified. Recent simulations of coarse-grained polymeric GF liquids have indicated the coexistence of clusters of mobile and immobile particles that appear to be directly linked, respectively, to the rate of molecular diffusion and structural relaxation. The present work examines the extent to which these distinct types of "dynamic heterogeneity" (DH) arise in metallic GF liquids (Cu-Zr, Ni-Nb, and Pd-Si alloys) having a vastly different molecular structure and chemistry. We first identified mobile and immobile particles and their transient clusters and found the DH in the metallic alloys to be remarkably similar in form to polymeric GF liquids, confirming the "universality" of the DH phenomenon. Furthermore, the lifetime of the mobile particle clusters was found to be directly related to the rate of diffusion in these materials, while the lifetime of immobile particles was found to be proportional to the structural relaxation time, providing some insight into the origin of decoupling in GF liquids. An examination of particles having a locally preferred atomic packing, and clusters of such particles, suggests that there is no one-to-one relation between these populations of particles so that an understanding of the origin of DH in terms of static fluid structure remains elusive.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jack F Douglas
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
16
|
Zhang W, Emamy H, Pazmiño Betancourt BA, Vargas-Lara F, Starr FW, Douglas JF. The interfacial zone in thin polymer films and around nanoparticles in polymer nanocomposites. J Chem Phys 2019; 151:124705. [DOI: 10.1063/1.5119269] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Wengang Zhang
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
- Materials Science and Engineering, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Hamed Emamy
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | - Beatriz A. Pazmiño Betancourt
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
- Materials Science and Engineering, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Fernando Vargas-Lara
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
- Materials Science and Engineering, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Jack F. Douglas
- Materials Science and Engineering, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
17
|
Zhang W, Starr FW, Douglas JF. Collective Motion in the Interfacial and Interior Regions of Supported Polymer Films and Its Relation to Relaxation. J Phys Chem B 2019; 123:5935-5941. [PMID: 31192601 PMCID: PMC7430234 DOI: 10.1021/acs.jpcb.9b04155] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand the role of collective motion in the often large changes in interfacial molecular mobility observed in polymer films, we investigate the extent of collective motion in the interfacial regions of a thin supported polymer film and within the film interior by molecular dynamics simulation. Contrary to commonly stated expectations, we find that the extent of collective motion, as quantified by string-like molecular exchange motion, is similar in magnitude in the polymer-air interfacial layer as the film interior and distinct from the bulk material. This finding is consistent with Adam-Gibbs description of the segmental dynamics within mesoscopic film regions, where the extent of collective motion is related to the configurational entropy of the film as a whole rather than a locally defined extent of collective motion or configurational entropy.
Collapse
Affiliation(s)
- Wengang Zhang
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, United States
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
18
|
Zhang H, Wang X, Chremos A, Douglas JF. Superionic UO2: A model anharmonic crystalline material. J Chem Phys 2019; 150:174506. [DOI: 10.1063/1.5091042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xinyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Alexandros Chremos
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Jack F. Douglas
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
19
|
Pazmiño Betancourt BA, Starr FW, Douglas JF. String-like collective motion in the α- and β-relaxation of a coarse-grained polymer melt. J Chem Phys 2018; 148:104508. [DOI: 10.1063/1.5009442] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Beatriz A. Pazmiño Betancourt
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
20
|
Wang X, Tong X, Zhang H, Douglas JF. String-like collective motion and diffusion in the interfacial region of ice. J Chem Phys 2017; 147:194508. [DOI: 10.1063/1.5004177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xinyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuhang Tong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
21
|
Xu TD, Wang XD, Zhang H, Cao QP, Zhang DX, Jiang JZ. Structural evolution and atomic dynamics in Ni–Nb metallic glasses: A molecular dynamics study. J Chem Phys 2017; 147:144503. [DOI: 10.1063/1.4995006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- T. D. Xu
- International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - X. D. Wang
- International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - H. Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Q. P. Cao
- International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - D. X. Zhang
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - J. Z. Jiang
- International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
22
|
Zhang W, Douglas JF, Starr FW. Dynamical heterogeneity in a vapor-deposited polymer glass. J Chem Phys 2017; 146:203310. [DOI: 10.1063/1.4976542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Wengang Zhang
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, USA
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, USA
| |
Collapse
|
23
|
Haddadian EJ, Zhang H, Freed KF, Douglas JF. Comparative Study of the Collective Dynamics of Proteins and Inorganic Nanoparticles. Sci Rep 2017; 7:41671. [PMID: 28176808 PMCID: PMC5296861 DOI: 10.1038/srep41671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 12/14/2016] [Indexed: 12/16/2022] Open
Abstract
Molecular dynamics simulations of ubiquitin in water/glycerol solutions are used to test the suggestion by Karplus and coworkers that proteins in their biologically active state should exhibit a dynamics similar to 'surface-melted' inorganic nanoparticles (NPs). Motivated by recent studies indicating that surface-melted inorganic NPs are in a 'glassy' state that is an intermediate dynamical state between a solid and liquid, we probe the validity and significance of this proposed analogy. In particular, atomistic simulations of ubiquitin in solution based on CHARMM36 force field and pre-melted Ni NPs (Voter-Chen Embedded Atom Method potential) indicate a common dynamic heterogeneity, along with other features of glass-forming (GF) liquids such as collective atomic motion in the form of string-like atomic displacements, potential energy fluctuations and particle displacements with long range correlations ('colored' or 'pink' noise), and particle displacement events having a power law scaling in magnitude, as found in earthquakes. On the other hand, we find the dynamics of ubiquitin to be even more like a polycrystalline material in which the α-helix and β-sheet regions of the protein are similar to crystal grains so that the string-like collective atomic motion is concentrated in regions between the α-helix and β-sheet domains.
Collapse
Affiliation(s)
- Esmael J Haddadian
- Biological Sciences Collegiate Division, University of Chicago, Chicago, IL 60637, USA
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta, T6G 1H9 Canada
| | - Karl F Freed
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jack F Douglas
- Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
24
|
Zhang H, Zhong C, Douglas JF, Wang X, Cao Q, Zhang D, Jiang JZ. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys. J Chem Phys 2015; 142:164506. [DOI: 10.1063/1.4918807] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hao Zhang
- International Center for New-Structured Materials (ICNSM), Zhejiang University and Laboratory of New-Structured Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Cheng Zhong
- International Center for New-Structured Materials (ICNSM), Zhejiang University and Laboratory of New-Structured Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Xiaodong Wang
- International Center for New-Structured Materials (ICNSM), Zhejiang University and Laboratory of New-Structured Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Qingping Cao
- International Center for New-Structured Materials (ICNSM), Zhejiang University and Laboratory of New-Structured Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Dongxian Zhang
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Jian-Zhong Jiang
- International Center for New-Structured Materials (ICNSM), Zhejiang University and Laboratory of New-Structured Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|