1
|
Li Y, Yao P, Guo H. Non-Rouse behavior of short ring polymers in melts by molecular dynamics simulations. SOFT MATTER 2023; 19:7161-7171. [PMID: 37702037 DOI: 10.1039/d3sm00668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Short ring polymers are expected to behave nearly Rouse-like due to the little effect of topological constraints of non-knot and non-concatenation. However, this notion is questioned because of several simulation and experiment findings in recent times, which requires a further more quantitative study. Therefore, we perform a deep investigation of statics and dynamics of flexible short ring polymers (N < 2Ne) in melts via molecular dynamics simulations by further taking linear analogues as well as all-crossing ring and linear polymers with switched off topological constraints for comparisons and demonstrate the noticeable deviations from the Rouse model in terms of local and global scales. Although the overall size is compact, the subchains are swollen, which is traced back to the deeper "segmental correlation hole" effect. The same scaling relationship of the non-Gaussian deviation of the static structure factor holds, but the deviation magnitude of rings is larger than that of linear analogues. By checking the non-Gaussian parameter and autocorrelation function of center-of-mass velocity, the physical origin of anomalous sub-diffusions of short rings is identified as unscreened viscoelastic hydrodynamic interactions and not correlation hole effects, like linear analogues.
Collapse
Affiliation(s)
- Yedi Li
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pu Yao
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Guo
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Song HY, Park SJ, Hyun K. Distinguishing between Linear and Star Polystyrenes with Unentangled Arms by Dynamic Oscillatory Shear Tests. ACS Macro Lett 2023; 12:968-973. [PMID: 37389980 DOI: 10.1021/acsmacrolett.3c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Linear and nonlinear viscoelastic properties of star polystyrene (PS) melts with unentangled arms were measured by using small-amplitude and medium-amplitude oscillatory shear (SAOS and MAOS) tests. For comparison purposes, such tests were also conducted on entangled linear and star PS melts. Interestingly, the linear viscoelastic properties of unentangled star PS were quantitatively described using the Lihktman-McLeish model for entangled linear chains, indicating that unentangled stars were indistinguishable from linear chains by using relaxation spectra. By contrast, the relative intrinsic nonlinearity (Q0), one of the MAOS material functions, exhibited a difference between unentangled star and linear PS. When the maximum Q0 value (Q0,max) was plotted against the entanglement number of span molecules (Zs), unentangled star PS exhibited larger Q0,max values than linear PS, which was quantitatively predicted via the multimode K-BKZ model. Therefore, in the unentangled regime, star PS was concluded to be characterized by intrinsically higher relative nonlinearity than linear PS.
Collapse
Affiliation(s)
- Hyeong Yong Song
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Seung Joon Park
- Department of Chemical Engineering and Biotechnology, Tech University of Korea, Siheung-Si, Gyeonggi-Do 15073, Republic of Korea
| | - Kyu Hyun
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Wu Z, Müller-Plathe F. Slip-Spring Hybrid Particle-Field Molecular Dynamics for Coarse-Graining Branched Polymer Melts: Polystyrene Melts as an Example. J Chem Theory Comput 2022; 18:3814-3828. [PMID: 35617016 DOI: 10.1021/acs.jctc.2c00107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The topology of chains significantly modifies the dynamical properties of polymer melts. Here, we extend a recently developed efficient simulation method, namely the slip-spring hybrid particle-field (SS-hPF) model, to study the structural and dynamical properties of branched polymer melts over large spatial-temporal scales. In the coarse-grained SS-hPF simulation of polymers, the bonded potentials are derived by iterative Boltzmann inversion from the underlying fine-grained model. The nonbonded potentials are computed from a density functional field instead of pairwise interactions used in standard molecular dynamics simulations, which increases the computational efficiency by a factor of 10-20. The entangled dynamics is lost due to the soft-core nature of density functional field interactions. It is recovered by a multichain slip-spring model that is rigorously parametrized from existing experimental or simulation data. To quantitatively predict the relaxation and diffusion of branched polymers, which are dominated by arm retraction rather than chain reptation, the slip-spring algorithm is augmented to improve the polymer dynamics near the branch point. Multiple dynamical observables, e.g., diffusion coefficients, arm relaxations, and tube survival probabilities, are characterized in an example coarse-grained model of symmetric and asymmetric star-shaped polystyrene melts. Consistent dynamical behaviors are identified and compared with theoretical predictions. With a single rescaling factor, the prediction of diffusion coefficients agrees well with the available experimental measurements. In this work, an efficient approach is provided to build chemistry-specific coarse-grained models for predicting the dynamics of branched polymers.
Collapse
Affiliation(s)
- Zhenghao Wu
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Molecular Dynamics Study of Star Polymer Melts under Start-up Shear. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2700-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Masubuchi Y, Doi Y, Uneyama T. Effects of Slip-Spring Parameters and Rouse Bead Density on Polymer Dynamics in Multichain Slip-Spring Simulations. J Phys Chem B 2022; 126:2930-2941. [PMID: 35298156 DOI: 10.1021/acs.jpcb.2c00697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multichain slip-spring (MCSS) model is one of the coarse-grained models of polymers developed in the niche between bead-spring models and tube type descriptions. In this model, polymers are represented by Rouse chains connected by virtual springs that temporally connect the chains, hop along the chain, and are constructed and annihilated at the chain ends. Earlier studies have shown that MCSS simulations can nicely reproduce entangled and unentangled polymer dynamics. However, the model parameters have been chosen arbitrarily, and their effects have not been reported. In this study, for the first time, we systematically investigated the effects of model parameters: fugacity of virtual springs, its intensity, and the Rouse bead density. We validated the employed simulation code by confirming that the statistics of the system follow the theoretical setup. Namely, the virtual spring density is correctly controlled, and polymer chains exhibit ideal chain statistics irrespective of the chosen parameter values. For diffusion and linear viscoelasticity, simulation results obtained for different parameters can be superposed with each other by conversion factors for the bead number per chain and units of length, time, and modulus. These conversion factors follow scaling laws concerning the number of Rouse segments between two consecutive anchoring points of virtual springs along the polymer chain. Besides, diffusion and viscoelasticity excellently agree with literature data for the standard bead-spring simulation. These results imply that the coarse-graining level for the MCSS model can be arbitrarily chosen and controlled by model parameters.
Collapse
Affiliation(s)
- Yuichi Masubuchi
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan
| | - Yuya Doi
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan
| | - Takashi Uneyama
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan
| |
Collapse
|
6
|
Wong CPJ, Choi P. Estimation of linear, ring, and star polyethylene viscosity through proper orthogonal decomposition and
Voronoi
tessellation analysis of molecular dynamics data. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chi Pui Jeremy Wong
- Donadeo Innovation Centre for Engineering, Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Phillip Choi
- Donadeo Innovation Centre for Engineering, Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
7
|
Combined Molecular Dynamics Simulation and Rouse Model Analysis of Static and Dynamic Properties of Unentangled Polymer Melts with Different Chain Architectures. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2489-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Wong CPJ, Choi P. A review on the relaxation dynamics analysis of unentangled polymers with different structures. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1810851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Chi Pui Jeremy Wong
- Donadeo Innovation Centre for Engineering, Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| | - Phillip Choi
- Donadeo Innovation Centre for Engineering, Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
9
|
Wong CPJ, Choi P. Prediction of crossover in the molecular weight dependence of polyethylene viscosity using a polymer free volume theory. SOFT MATTER 2020; 16:7458-7469. [PMID: 32667010 DOI: 10.1039/d0sm00752h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Based upon the Doolittle concept that viscosity and free volume are inversely related, we used the Boltzmann equation along with a polymer free volume theory to calculate the viscosity (η) of polyethylene with three different molecular structures - linear, ring and four-arm symmetrical star - over a molecular weight (M) range of 420-14 000 g mol-1. Free volume parameters were estimated using the Polymer Reference Interaction Site Model (PRISM) and generic van der Waals (GvdW) equation. The polymer free volume theory was able to describe the crossovers in the molecular weight dependence of the viscosity of the aforementioned molecular structures. In particular, the crossover for the linear structure was predicted at about 3000 g mole-1 with η ∼ M1.5 in the unentangled regime and η ∼ M3.3 in the entangled regime that agree reasonably well with experiment. The predictions for the other two structures also agree with the available simulation data. We also demonstrated that the accuracy of the viscosity prediction was sensitive to the difference between two free volume parameters (i.e., (φ+ - F)). Here, F signifies the probability of a bead finding free volume greater than the critical free volume while the fraction of such beads (φ+) can be used to calculate the activation energy. The theory also reproduced the temperature dependence of η for the linear structure at different M, giving apparent activation energy (Eappa) values in the range of 5.30-7.70 kcal mole-1 that are in good agreement with experimental values of 5.50-6.75 kcal mole-1. This work demonstrates for the first time that viscosity of polymer melts can be determined from the polymer free volume theory.
Collapse
Affiliation(s)
- Chi Pui Jeremy Wong
- Donadeo Innovation Centre for Engineering, Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, CanadaT6G 1H9.
| | - Phillip Choi
- Donadeo Innovation Centre for Engineering, Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, CanadaT6G 1H9.
| |
Collapse
|
10
|
Hu YF, Xue KL, Yu XC, Hou JX. The relaxation times of unentangled polymer melts with different molecular architectures. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1861-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Chremos A, Douglas JF. Influence of Branching on the Configurational and Dynamical Properties of Entangled Polymer Melts. Polymers (Basel) 2019; 11:E1045. [PMID: 31207890 PMCID: PMC6631115 DOI: 10.3390/polym11061045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
We probe the influence of branching on the configurational, packing, and density correlation function properties of polymer melts of linear and star polymers, with emphasis on molecular masses larger than the entanglement molecular mass of linear chains. In particular, we calculate the conformational properties of these polymers, such as the hydrodynamic radius R h , packing length p, pair correlation function g ( r ) , and polymer center of mass self-diffusion coefficient, D, with the use of coarse-grained molecular dynamics simulations. Our simulation results reproduce the phenomenology of simulated linear and branched polymers, and we attempt to understand our observations based on a combination of hydrodynamic and thermodynamic modeling. We introduce a model of "entanglement" phenomenon in high molecular mass polymers that assumes polymers can viewed in a coarse-grained sense as "soft" particles and, correspondingly, we model the emergence of heterogeneous dynamics in polymeric glass-forming liquids to occur in a fashion similar to glass-forming liquids in which the molecules have soft repulsive interactions. Based on this novel perspective of polymer melt dynamics, we propose a functional form for D that can describe our simulation results for both star and linear polymers, covering both the unentangled to entangled polymer melt regimes.
Collapse
Affiliation(s)
- Alexandros Chremos
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
12
|
Karatrantos A, Composto RJ, Winey KI, Kröger M, Clarke N. Modeling of Entangled Polymer Diffusion in Melts and Nanocomposites: A Review. Polymers (Basel) 2019; 11:E876. [PMID: 31091725 PMCID: PMC6571671 DOI: 10.3390/polym11050876] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 11/29/2022] Open
Abstract
This review concerns modeling studies of the fundamental problem of entangled (reptational) homopolymer diffusion in melts and nanocomposite materials in comparison to experiments. In polymer melts, the developed united atom and multibead spring models predict an exponent of the molecular weight dependence to the polymer diffusion very similar to experiments and the tube reptation model. There are rather unexplored parameters that can influence polymer diffusion such as polymer semiflexibility or polydispersity, leading to a different exponent. Models with soft potentials or slip-springs can estimate accurately the tube model predictions in polymer melts enabling us to reach larger length scales and simulate well entangled polymers. However, in polymer nanocomposites, reptational polymer diffusion is more complicated due to nanoparticle fillers size, loading, geometry and polymer-nanoparticle interactions.
Collapse
Affiliation(s)
- Argyrios Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland.
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK.
| |
Collapse
|
13
|
Affiliation(s)
- Yuichi Masubuchi
- Department of Materials Physics, Nagoya University, Nagoya, Japan
| |
Collapse
|
14
|
Liu L, Chen J, An L. Individual circular polyelectrolytes under shear flow. J Chem Phys 2018; 149:163316. [PMID: 30384673 DOI: 10.1063/1.5028406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Individual circular polyelectrolytes in simple shear flow are studied by means of mesoscale hydrodynamic simulations, revealing the complex coupling effects of shear rate, electrostatic interaction, and circular architecture on their conformational and dynamical properties. Shear flow deforms the polyelectrolyte and strips condensed counterions from its backbone. A decrease in condensed counterions alters electrostatic interactions among charged particles, affecting shear-induced polymer deformation and orientation. Circular architecture determines the features of deformation and orientation. At weak electrostatic interaction strengths, the polyelectrolyte changes its shape from an oblate ring at small shear rates to a prolate ring at large shear rates, whereas strong electrostatic interaction strengths are associated with a transition from a prolate coil to a prolate ring. Circular polyelectrolytes exhibit tumbling and tank-treading motions in the range of large shear rates. Further study reveals a similarity between the roles of intramolecular electrostatic repulsion and chain rigidity in shear-induced dynamics.
Collapse
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jizhong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
15
|
Liu L, den Otter WK, Briels WJ. Coarse-Grained Simulations of Three-Armed Star Polymer Melts and Comparison with Linear Chains. J Phys Chem B 2018; 122:10210-10218. [DOI: 10.1021/acs.jpcb.8b03104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Liu
- Department of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
| | | | - Wim J. Briels
- Forschungszentrum Jülich, ICS 3, D-52425 Jülich, Germany
| |
Collapse
|
16
|
Masubuchi Y, Uneyama T. Comparison among multi-chain models for entangled polymer dynamics. SOFT MATTER 2018; 14:5986-5994. [PMID: 29926890 DOI: 10.1039/c8sm00948a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although lots of coarse-grained models have been proposed to trace the long-term behaviors of entangled polymers, compatibility among the different models has not been frequently discussed. In this study, some dynamical and static quantities, such as diffusion, relaxation modulus, chain dimension, and entanglement density, were examined for the multi-chain slip-link model (primitive chain network model) and the multi-chain slip-spring model, and the results were compared with those reported for the standard bead-spring model. For the diffusion, three models are compatible with scale-conversion parameters for units of length, time and bead (segment) number (or the molecular weight). The relaxation modulus is also compatible given that the model dependence can be accommodated by the entanglement density and the additional scale-conversion for the unit of modulus. The chain dimension is reasonably coincident with small deviations due to the weak non-Gaussianity of the models. Apart from these plausible compatibilities, significant discrepancies have been found for the inter-chain cross-correlations in the relaxation modulus.
Collapse
|
17
|
Xu X, Chen J, An L. Probing relationship between structure and viscosity of unentangled polymers in steady shear flow. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9129-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Xu X, Chen J. Structural Mechanism for Viscosity of Semiflexible Polymer Melts in Shear Flow. ACS Macro Lett 2017; 6:331-336. [PMID: 35610868 DOI: 10.1021/acsmacrolett.6b00979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The viscosities of semiflexible polymers with different chain stiffnesses in shear flow are studied via nonequilibrium molecular dynamics techniques. The simulation reproduces the experimentally observed results, giving a complete picture of viscosity as chain stiffness increases. Analysis of flow-induced changes in chain conformation and local structure indicates two distinct mechanisms behind a variety of viscosity curves. For polymers of small stiffnesses, it is related to flow-induced changes in chain conformation and, for those of large stiffnesses, to flow-induced instabilities of nematic structures. The four-region flow curve is confirmed for polymers of contour length close to persistence length and understood by combining the two structural mechanisms. Thus, these findings clarify the microscopic structures indicated by the macroscopic viscosity.
Collapse
Affiliation(s)
- Xiaolei Xu
- State Key Laboratory
of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Jizhong Chen
- State Key Laboratory
of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
19
|
Chen W, Zhang K, Liu L, Chen J, Li Y, An L. Conformation and Dynamics of Individual Star in Shear Flow and Comparison with Linear and Ring Polymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Kexin Zhang
- School
of Environmental Science, Northeast Normal University, 5268 Renmin
Street, Changchun, P. R. China 130024
| | | | | | | | | |
Collapse
|
20
|
Xu X, Chen J. Effect of functionality on unentangled star polymers at equilibrium and under shear flow. J Chem Phys 2016; 144:244905. [DOI: 10.1063/1.4955098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, People’s Republic of China
| | - Jizhong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, People’s Republic of China
| |
Collapse
|
21
|
Li S, Chen J, Xu D, Shi T. Topological constraints of network chains in telechelic associative polymer gels. J Chem Phys 2015; 143:244902. [DOI: 10.1063/1.4938233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sijia Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, People’s Republic of China
| | - Jizhong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, People’s Republic of China
| | - Donghua Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, People’s Republic of China
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, People’s Republic of China
| |
Collapse
|