1
|
Sun K, Vasquez L, Borrelli R, Chen L, Zhao Y, Gelin MF. Interconnection between Polarization-Detected and Population-Detected Signals: Theoretical Results and Ab Initio Simulations. J Chem Theory Comput 2024; 20:7560-7573. [PMID: 39185737 DOI: 10.1021/acs.jctc.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Most of spectroscopic signals are specified by the nonlinear laser-induced polarization. In recent years, population-detection of signals becomes a trend in femtosecond spectroscopy. Polarization-detected (PD) and population-detected signals are fundamentally different, because they are determined by photoinduced processes acting on disparate time scales. In this work, we consider the fluorescence-detected (FD) N-wave-mixing (NWM) signal as a representative example of population-detected signals, derive a rigorous expression for this signal, and discuss its approximate variants suitable for numerical simulations. This leads us to the definition of the phenomenological FD (PFD) signal, which contains as a special case all definitions of FD signals available in the literature. Then we formulate and prove the population-polarization equivalence (PPE) theorem, which states that PFD NWM signals produced by (possibly strong) laser pulses can be evaluated as conventional PD signals in which the effective polarization is determined by the PFD transition dipole moment operator. We use the PPE theorem for the construction of the ab initio protocol for the simulation of PFD 4WM signals. As an example, we calculate electronic two-dimensional (2D) PFD spectra of the gas-phase pyrazine and compare them with the corresponding PD 2D spectra.
Collapse
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Luis Vasquez
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | | | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
2
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
3
|
Kiessling AJ, Cina JA. Monitoring the evolution of intersite and interexciton coherence in electronic excitation transfer via wave-packet interferometry. J Chem Phys 2020; 152:244311. [PMID: 32610990 DOI: 10.1063/5.0008766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We detail an experimental strategy for tracking the generation and time-development of electronic coherence within the singly excited manifold of an energy-transfer dimer. The technique requires that the two monomers have nonparallel electronic transition-dipole moments and that these possess fixed orientations in space. It makes use of two-dimensional wave-packet interferometry (WPI or whoopee) measurements in which the A, B, C, and D pulses have respective polarizations e, e, e, and e'. In the case of energy-transfer coupling that is weak or strong compared to electronic-nuclear interactions, it is convenient to follow the evolution of intersite or interexciton coherence, respectively. Under weak coupling, e could be perpendicular to the acceptor chromophore's transition dipole moment and the unit vector e' would be perpendicular to the donor's transition dipole. Under strong coupling, e could be perpendicular to the ground-to-excited transition dipole to the lower exciton level and e' would be perpendicular to the ground-to-excited transition dipole to the upper exciton level. If the required spatial orientation can be realized for an entire ensemble, experiments of the kind proposed could be performed by either conventional four-wave-mixing or fluorescence-detected WPI methods. Alternatively, fluorescence-detected whoopee experiments of this kind could be carried out on a single energy-transfer dimer of fixed orientation. We exhibit detailed theoretical expressions for the desired WPI signal, explain the physical origin of electronic coherence detection, and show calculated observed-coherence signals for model dimers with one, two, or three internal vibrational modes per monomer and both weak and strong energy-transfer coupling.
Collapse
Affiliation(s)
- Alexis J Kiessling
- Department of Chemistry and Biochemistry, Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Jeffrey A Cina
- Department of Chemistry and Biochemistry, Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
4
|
Marcus M, Knee GC, Datta A. Towards a spectroscopic protocol for unambiguous detection of quantum coherence in excitonic energy transport. Faraday Discuss 2020; 221:110-132. [DOI: 10.1039/c9fd00068b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We propose a witness for quantum coherence in EET that can be extracted directly from two-pulse pump–probe spectroscopy experimental data.
Collapse
Affiliation(s)
- Max Marcus
- Department of Physics
- University of Warwick
- Coventry
- UK
| | | | - Animesh Datta
- Department of Physics
- University of Warwick
- Coventry
- UK
| |
Collapse
|
5
|
Kriete B, Lüttig J, Kunsel T, Malý P, Jansen TLC, Knoester J, Brixner T, Pshenichnikov MS. Interplay between structural hierarchy and exciton diffusion in artificial light harvesting. Nat Commun 2019; 10:4615. [PMID: 31601795 PMCID: PMC6787233 DOI: 10.1038/s41467-019-12345-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
Unraveling the nature of energy transport in multi-chromophoric photosynthetic complexes is essential to extract valuable design blueprints for light-harvesting applications. Long-range exciton transport in such systems is facilitated by a combination of delocalized excitation wavefunctions (excitons) and exciton diffusion. The unambiguous identification of the exciton transport is intrinsically challenging due to the system's sheer complexity. Here we address this challenge by employing a spectroscopic lab-on-a-chip approach: ultrafast coherent two-dimensional spectroscopy and microfluidics working in tandem with theoretical modeling. We show that at low excitation fluences, the outer layer acts as an exciton antenna supplying excitons to the inner tube, while under high excitation fluences the former converts its functionality into an exciton annihilator which depletes the exciton population prior to any exciton transfer. Our findings shed light on the excitonic trajectories across different sub-units of a multi-layered artificial light-harvesting complex and underpin their great potential for directional excitation energy transport.
Collapse
Affiliation(s)
- Björn Kriete
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Julian Lüttig
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tenzin Kunsel
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Pavel Malý
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Thomas L C Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jasper Knoester
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Maxim S Pshenichnikov
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
6
|
Wang L, Allodi MA, Engel GS. Quantum coherences reveal excited-state dynamics in biophysical systems. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0109-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
AUTRY TRAVISM, MOODY GALAN, FRASER JAMES, MCDONALD COREY, MIRIN RP, SILVERMAN KEVIN. Single-scan acquisition of multiple multidimensional spectra. OPTICA 2019; 6:10.1364/optica.6.000735. [PMID: 39440276 PMCID: PMC11494713 DOI: 10.1364/optica.6.000735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 10/25/2024]
Abstract
Multidimensional coherent spectroscopy is a powerful tool for understanding the ultrafast dynamics of complex quantum systems. To fully characterize the nonlinear optical response of a system, multiple pulse sequences must be recorded and quantitatively compared. We present a new single-scan method that enables rapid and parallel acquisition of all unique pulse sequences corresponding to first- and third-order degenerate wave-mixing processes. Signals are recorded with shot-noise limited detection, enabling acquisition times of ~2 minutes with ~100 zs phase stability and ~8 orders of dynamic range, in a collinear geometry, on a single-pixel detector. We demonstrate this method using quantum well excitons, and quantitative analysis reveals new insights into the bosonic nature of excitons. This scheme may enable rapid and scalable analysis of unique chemical signatures, metrology of optical susceptibilities, nonperturbative coherent control, and the implementation of quantum information protocols using multidimensional spectroscopy.
Collapse
Affiliation(s)
- TRAVIS M. AUTRY
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - GALAN MOODY
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - JAMES FRASER
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Queen’s University, Kingston, Ontario ONK7L3N6, Canada
| | - COREY MCDONALD
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- University of Colorado, Boulder, Colorado 80309, USA
| | - R. P. MIRIN
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - KEVIN SILVERMAN
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| |
Collapse
|
8
|
Introduction to State-of-the-Art Multidimensional Time-Resolved Spectroscopy Methods. Top Curr Chem (Cham) 2018; 376:28. [DOI: 10.1007/s41061-018-0206-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
|
9
|
Fresch B, Bocquel J, Hiluf D, Rogge S, Levine RD, Remacle F. Implementation of Multivariable Logic Functions in Parallel by Electrically Addressing a Molecule of Three Dopants in Silicon. Chemphyschem 2017; 18:1790-1797. [PMID: 28470997 DOI: 10.1002/cphc.201700222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/14/2017] [Indexed: 12/17/2022]
Abstract
To realize low-power, compact logic circuits, one can explore parallel operation on single nanoscale devices. An added incentive is to use multivalued (as distinct from Boolean) logic. Here, we theoretically demonstrate that the computation of all the possible outputs of a multivariate, multivalued logic function can be implemented in parallel by electrical addressing of a molecule made up of three interacting dopant atoms embedded in Si. The electronic states of the dopant molecule are addressed by pulsing a gate voltage. By simulating the time evolution of the non stationary electronic density built by the gate voltage, we show that one can implement a molecular decision tree that provides in parallel all the outputs for all the inputs of the multivariate, multivalued logic function. The outputs are encoded in the populations and in the bond orders of the dopant molecule, which can be measured using an STM tip. We show that the implementation of the molecular logic tree is equivalent to a spectral function decomposition. The function that is evaluated can be field-programmed by changing the time profile of the pulsed gate voltage.
Collapse
Affiliation(s)
- Barbara Fresch
- Theoretical Physical Chemistry, University of Liege, B4000, Liege, Belgium.,Department of Chemical Science, University of Padova, Via Marzolo 1, 35131, Italy
| | - Juanita Bocquel
- Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Dawit Hiluf
- The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,Current address: Department of Chemistry, Ben Gurion University of the Negev, Be'er-Sheva, 84105, Israel
| | - Sven Rogge
- Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Raphael D Levine
- The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine and Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, USA
| | - Françoise Remacle
- Theoretical Physical Chemistry, University of Liege, B4000, Liege, Belgium.,The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
10
|
Dostál J, Benešová B, Brixner T. Two-dimensional electronic spectroscopy can fully characterize the population transfer in molecular systems. J Chem Phys 2016; 145:124312. [DOI: 10.1063/1.4962577] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jakub Dostál
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Barbora Benešová
- Institut für Mathematik, Universität Würzburg, Emil-Fischer-Straße 40, 97074 Würzburg, Germany
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|