1
|
Seo J, Singh R, Ryu J, Choi JH. Molecular Aggregation Behavior and Microscopic Heterogeneity in Binary Osmolyte-Water Solutions. J Chem Inf Model 2024; 64:138-149. [PMID: 37983534 DOI: 10.1021/acs.jcim.3c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Osmolytes, small organic compounds, play a key role in modulating the protein stability in aqueous solutions, but the operating mechanism of the osmolyte remains inconclusive. Here, we attempt to clarify the mode of osmolyte action by quantitatively estimating the microheterogeneity of osmolyte-water mixtures with the aid of molecular dynamics simulation, graph theoretical analysis, and spatial distribution measurement in the four osmolyte solutions of trimethylamine-N-oxide (TMAO), tetramethylurea (TMU), dimethyl sulfoxide, and urea. TMAO, acting as a protecting osmolyte, tends to remain isolated with no formation of osmolyte aggregates while preferentially interacting with water, but there is a strong aggregation propensity in the denaturant TMU solution, characterized by favored hydrophobic interactions between TMU molecules. Taken together, the mechanism of osmolyte action on protein stability is proposed as a comprehensive one that encompasses the direct interactions between osmolytes and proteins and indirect interactions through the regulation of water properties in the osmolyte-water mixtures.
Collapse
Affiliation(s)
- Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ravi Singh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jonghyuk Ryu
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
2
|
Seo J, Choi S, Singh R, Choi JH. Spatial Inhomogeneity and Molecular Aggregation behavior in Aqueous Binary Liquid Mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
3
|
Molecular aggregation in liquid water: Laplace spectra and spectral clustering of H-bonded network. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Abstract
Aqueous cosolvent systems (ACoSs) are mixtures of small polar molecules such as amides, alcohols, dimethyl sulfoxide, or ions in water. These liquids have been the focus of fundamental studies due to their complex intermolecular interactions as well as their broad applications in chemistry, medicine, and materials science. ACoSs are fully miscible at the macroscopic level but exhibit nanometer-scale spatial heterogeneity. ACoSs have recently received renewed attention within the chemical physics community as model systems to explore the relationship between intermolecular interactions and microscopic liquid-liquid phase separation. In this perspective, we provide an overview of ACoS spatial segregation, dynamic heterogeneity, and multiscale relaxation dynamics. We describe emerging approaches to characterize liquid microstructure, H-bond networks, and dynamics using modern experimental tools combined with molecular dynamics simulations and network-based analysis techniques.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Texas at Austin, Austin, Texas 19104, USA
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 19104, USA
| |
Collapse
|
5
|
Mikalčiūtė A, Vilčiauskas L. Insights into the hydrogen bond network topology of phosphoric acid and water systems. Phys Chem Chem Phys 2021; 23:6213-6224. [PMID: 33687381 DOI: 10.1039/d0cp05126h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphoric acid and its mixtures with water are some of the best proton conducting materials known to science. Although the proton conductivity in pure phosphoric acid decreases upon external doping with excess H+ or OH-, the addition of water improves it substantially. A number of experimental and theoretical studies indicate that these systems form a very special case of hydrogen bond networks which not only facilitate fast proton transport but also show a number of other interesting properties such as glass forming ability. In this work, we present the molecular dynamics simulation results of the H3PO4-H2O system over the entire concentration range. The hydrogen bond networks were analyzed in terms of conventional microscopic as well as topological properties based on graph and network theory. The results show that the hydrogen bond network of H3PO4 is fundamentally different from that of H2O. On average, each phosphoric acid molecule tends to form more and stronger hydrogen bonds than water which leads to a much more connected and clustered network showing small-world properties which are absent in pure water. Moreover, these hydrogen bond network properties persist in the H3PO4-H2O mixtures as well, even at relatively high water contents. Finally, many of the physical properties such as molecular diffusion coefficients seem to be also intimately related to the network topological properties and follow similar trends with respect to system content. These results strongly indicate that many important properties such as proton transport in phosphoric acid and its aqueous systems are fundamentally related to their hydrogen bond network topology and might hold the key for their ultimate molecular understanding.
Collapse
Affiliation(s)
- Austėja Mikalčiūtė
- Institute of Chemistry, Vilnius University, Saulėtekio al. 3, LT-10257, Vilnius, Lithuania.
| | - Linas Vilčiauskas
- Institute of Chemistry, Vilnius University, Saulėtekio al. 3, LT-10257, Vilnius, Lithuania. and Center for Physical Sciences and Technology (FTMC), Saulėtekio al. 3, LT-10257, Vilnius, Lithuania
| |
Collapse
|
6
|
Choi S, Parameswaran S, Choi JH. Understanding alcohol aggregates and the water hydrogen bond network towards miscibility in alcohol solutions: graph theoretical analysis. Phys Chem Chem Phys 2020; 22:17181-17195. [PMID: 32677643 DOI: 10.1039/d0cp01991g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under ambient conditions, methanol and ethanol are miscible in water at all concentrations, while n-butanol is partially miscible. This is the first study to quantitatively examine the miscibility of butanol and compare with miscible alcohols by employing molecular dynamics simulations and graph theoretical analysis of three water-alcohol mixtures at various concentrations. We show how distinct alcohol aggregates are formed, thereby affecting the water structure, which established the relationship between the morphological structure of the aggregates and the miscibility of the alcohol in aqueous solution. The aggregates of methanol and ethanol in highly concentrated solutions form an extended H-bond network that intertwines well with the H-bond network of water. n-Butanol tends to self-associate and form large aggregates, while such aggregates are segregated from water. Graph theoretical analysis revealed that the alcohol aggregates of methanol and ethanol solutions have a morphological structure different from that of n-butanol, although there is no significant difference in morphology between the three pure alcohols. These two distinct alcohol aggregates are classified as water-compatible and water-incompatible depending upon their interaction with the water H-bond network, and their effect on the water structure was investigated. Our study reveals that the water-compatible network of alcohol aggregates in methanol and ethanol solutions disrupts the water H-bond networks, while the water-incompatible network of n-butanol aggregates does not considerably alter the water structure, which is consistent with the experimental results. Furthermore, we propose that miscible alcohols form water-compatible networks in binary aqueous systems while partially miscible alcohols form water-incompatible networks. The bifurcating hypothesis on the alcohol aggregation behavior in liquid water is of critical use to understand the fundamental issues such as solubility and phase separation in solution systems.
Collapse
Affiliation(s)
- Seungeui Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | | | | |
Collapse
|
7
|
McEldrew M, Goodwin ZAH, Bi S, Bazant MZ, Kornyshev AA. Theory of ion aggregation and gelation in super-concentrated electrolytes. J Chem Phys 2020; 152:234506. [DOI: 10.1063/5.0006197] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Michael McEldrew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zachary A. H. Goodwin
- Department of Physics, CDT Theory and Simulation of Materials, Imperial College of London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Department of Chemistry, Imperial College of London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
- Thomas Young Centre for Theory and Simulation of Materials, Imperial College of London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Sheng Bi
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Martin Z. Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alexei A. Kornyshev
- Department of Chemistry, Imperial College of London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
- Thomas Young Centre for Theory and Simulation of Materials, Imperial College of London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Institute of Molecular Science and Engineering, Imperial College of London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Weighted persistent homology for osmolyte molecular aggregation and hydrogen-bonding network analysis. Sci Rep 2020; 10:9685. [PMID: 32546801 PMCID: PMC7297731 DOI: 10.1038/s41598-020-66710-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
It has long been observed that trimethylamine N-oxide (TMAO) and urea demonstrate dramatically different properties in a protein folding process. Even with the enormous theoretical and experimental research work on these two osmolytes, various aspects of their underlying mechanisms still remain largely elusive. In this paper, we propose to use the weighted persistent homology to systematically study the osmolytes molecular aggregation and their hydrogen-bonding network from a local topological perspective. We consider two weighted models, i.e., localized persistent homology (LPH) and interactive persistent homology (IPH). Boltzmann persistent entropy (BPE) is proposed to quantitatively characterize the topological features from LPH and IPH, together with persistent Betti number (PBN). More specifically, from the localized persistent homology models, we have found that TMAO and urea have very different local topology. TMAO is found to exhibit a local network structure. With the concentration increase, the circle elements in these networks show a clear increase in their total numbers and a decrease in their relative sizes. In contrast, urea shows two types of local topological patterns, i.e., local clusters around 6 Å and a few global circle elements at around 12 Å. From the interactive persistent homology models, it has been found that our persistent radial distribution function (PRDF) from the global-scale IPH has same physical properties as the traditional radial distribution function. Moreover, PRDFs from the local-scale IPH can also be generated and used to characterize the local interaction information. Other than the clear difference of the first peak value of PRDFs at filtration size 4 Å, TMAO and urea also shows very different behaviors at the second peak region from filtration size 5 Å to 10 Å. These differences are also reflected in the PBNs and BPEs of the local-scale IPH. These localized topological information has never been revealed before. Since graphs can be transferred into simplicial complexes by the clique complex, our weighted persistent homology models can be used in the analysis of various networks and graphs from any molecular structures and aggregation systems.
Collapse
|
9
|
Kim QH, Ko JH, Kim S, Jhe W. GCIceNet: a graph convolutional network for accurate classification of water phases. Phys Chem Chem Phys 2020; 22:26340-26350. [DOI: 10.1039/d0cp03456h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop GCIceNet, which automatically generates machine-based order parameters for classifying the phases of water molecules via supervised and unsupervised learning with graph convolutional networks.
Collapse
Affiliation(s)
- QHwan Kim
- Center for 0D Nanofluidics
- Department of Physics and Astronomy
- Institute of Applied Physics
- Seoul National University
- Seoul 08826
| | - Joon-Hyuk Ko
- Center for 0D Nanofluidics
- Department of Physics and Astronomy
- Institute of Applied Physics
- Seoul National University
- Seoul 08826
| | - Sunghoon Kim
- Center for 0D Nanofluidics
- Department of Physics and Astronomy
- Institute of Applied Physics
- Seoul National University
- Seoul 08826
| | - Wonho Jhe
- Center for 0D Nanofluidics
- Department of Physics and Astronomy
- Institute of Applied Physics
- Seoul National University
- Seoul 08826
| |
Collapse
|
10
|
Xia K, Anand DV, Shikhar S, Mu Y. Persistent homology analysis of osmolyte molecular aggregation and their hydrogen-bonding networks. Phys Chem Chem Phys 2019; 21:21038-21048. [DOI: 10.1039/c9cp03009c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dramatically different patterns can be observed in the topological fingerprints for hydrogen-bonding networks from two types of osmolyte systems.
Collapse
Affiliation(s)
- Kelin Xia
- Division of Mathematical Sciences
- School of Physical and Mathematical Sciences
- School of Biological Sciences
- Nanyang Technological University
- Singapore
| | - D. Vijay Anand
- Division of Mathematical Sciences
- School of Physical and Mathematical Sciences
- School of Biological Sciences
- Nanyang Technological University
- Singapore
| | - Saxena Shikhar
- School of Biological Sciences
- Nanyang Technological University
- Singapore
| | - Yuguang Mu
- School of Biological Sciences
- Nanyang Technological University
- Singapore
| |
Collapse
|
11
|
Lim J, Park K, Lee H, Kim J, Kwak K, Cho M. Nanometric Water Channels in Water-in-Salt Lithium Ion Battery Electrolyte. J Am Chem Soc 2018; 140:15661-15667. [DOI: 10.1021/jacs.8b07696] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joonhyung Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02842, Korea
| | - Kwanghee Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02842, Korea
| | - Hochan Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02842, Korea
| | - Jungyu Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02842, Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02842, Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02842, Korea
| |
Collapse
|
12
|
Patel LA, Kindt JT. Simulations of NaCl Aggregation from Solution: Solvent Determines Topography of Free Energy Landscape. J Comput Chem 2018; 40:135-147. [DOI: 10.1002/jcc.25554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Lara A. Patel
- Department of Chemistry; Emory University; 1515 Dickey Drive, Atlanta Georgia 30322
| | - James T. Kindt
- Department of Chemistry; Emory University; 1515 Dickey Drive, Atlanta Georgia 30322
| |
Collapse
|
13
|
Choi JH, Lee H, Choi HR, Cho M. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions. Annu Rev Phys Chem 2018; 69:125-149. [DOI: 10.1146/annurev-physchem-050317-020915] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun-Ho Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Current affiliation: Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hochan Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyung Ran Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Han K, Venable RM, Bryant AM, Legacy CJ, Shen R, Li H, Roux B, Gericke A, Pastor RW. Graph-Theoretic Analysis of Monomethyl Phosphate Clustering in Ionic Solutions. J Phys Chem B 2018; 122:1484-1494. [PMID: 29293344 DOI: 10.1021/acs.jpcb.7b10730] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
All-atom molecular dynamics simulations combined with graph-theoretic analysis reveal that clustering of monomethyl phosphate dianion (MMP2-) is strongly influenced by the types and combinations of cations in the aqueous solution. Although Ca2+ promotes the formation of stable and large MMP2- clusters, K+ alone does not. Nonetheless, clusters are larger and their link lifetimes are longer in mixtures of K+ and Ca2+. This "synergistic" effect depends sensitively on the Lennard-Jones interaction parameters between Ca2+ and the phosphorus oxygen and correlates with the hydration of the clusters. The pronounced MMP2- clustering effect of Ca2+ in the presence of K+ is confirmed by Fourier transform infrared spectroscopy. The characterization of the cation-dependent clustering of MMP2- provides a starting point for understanding cation-dependent clustering of phosphoinositides in cell membranes.
Collapse
Affiliation(s)
- Kyungreem Han
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Anne-Marie Bryant
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute , Worcester, Massachusetts 01609, United States
| | - Christopher J Legacy
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute , Worcester, Massachusetts 01609, United States
| | - Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Hui Li
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute , Worcester, Massachusetts 01609, United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
15
|
Ren G, Chen L, Wang Y. Dynamic heterogeneity in aqueous ionic solutions. Phys Chem Chem Phys 2018; 20:21313-21324. [DOI: 10.1039/c8cp02787k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is well known that supercooled liquids have heterogeneous dynamics, but it is still unclear whether dynamic heterogeneity also exists in aqueous ionic solutions at room or even higher temperatures.
Collapse
Affiliation(s)
- Gan Ren
- Department of Physics
- Civil Aviation Flight University of China
- Guanghan
- China
| | - Lin Chen
- State Key Laboratory of Environment-Friendly Energy Material
- Southwest University of Science and Technology
- Mianyang
- China
| | - Yanting Wang
- CAS Key Laboratory of Theoretical Physics
- Institute of Theoretical Physics
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
16
|
Choi JH, Choi HR, Jeon J, Cho M. Ion aggregation in high salt solutions. VII. The effect of cations on the structures of ion aggregates and water hydrogen-bonding network. J Chem Phys 2017; 147:154107. [DOI: 10.1063/1.4993479] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jun-Ho Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Korea University, Seoul 02841, South Korea
| | - Hyung Ran Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Korea University, Seoul 02841, South Korea
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Korea University, Seoul 02841, South Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Korea University, Seoul 02841, South Korea
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| |
Collapse
|
17
|
Affiliation(s)
- Mónika Valiskó
- Department of Physical Chemistry, University of Pannonia, Veszprém, Hungary
| | - Dezső Boda
- Department of Physical Chemistry, University of Pannonia, Veszprém, Hungary
- Institute of Advanced Studies Kőszeg (iASK), Kőszeg, Hungary
| |
Collapse
|
18
|
Choi JH, Cho M. Ion aggregation in high salt solutions. VI. Spectral graph analysis of chaotropic ion aggregates. J Chem Phys 2016; 145:174501. [DOI: 10.1063/1.4966246] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jun-Ho Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Korea University, Seoul 02841, South Korea
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Korea University, Seoul 02841, South Korea
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| |
Collapse
|
19
|
Lee H, Choi JH, Verma PK, Cho M. Computational Vibrational Spectroscopy of HDO in Osmolyte–Water Solutions. J Phys Chem A 2016; 120:5874-86. [DOI: 10.1021/acs.jpca.6b06305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hochan Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science and ‡Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Ho Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science and ‡Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Pramod Kumar Verma
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science and ‡Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science and ‡Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
20
|
Choi JH, Cho M. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network. J Chem Phys 2016; 144:204126. [DOI: 10.1063/1.4952648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jun-Ho Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Korea University, Seoul 02841, South Korea and Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Korea University, Seoul 02841, South Korea and Department of Chemistry, Korea University, Seoul 02841, South Korea
| |
Collapse
|