1
|
Bao S, Raymond N, Nooijen M. Time dependent vibrational electronic coupled cluster (VECC) theory for non-adiabatic nuclear dynamics. J Chem Phys 2024; 160:094105. [PMID: 38426527 DOI: 10.1063/5.0190034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
A time-dependent vibrational electronic coupled-cluster (VECC) approach is proposed to simulate photo-electron/UV-VIS absorption spectra as well as time-dependent properties for non-adiabatic vibronic models, going beyond the Born-Oppenheimer approximation. A detailed derivation of the equations of motion and a motivation for the ansatz are presented. The VECC method employs second-quantized bosonic construction operators and a mixed linear and exponential ansatz to form a compact representation of the time-dependent wave-function. Importantly, the method does not require a basis set, has only a few user-defined inputs, and has a classical (polynomial) scaling with respect to the number of degrees of freedom (of the vibronic model), resulting in a favorable computational cost. In benchmark applications to small models and molecules, the VECC method provides accurate results compared to multi-configurational time-dependent Hartree calculations when predicting short-time dynamical properties (i.e., photo-electron/UV-VIS absorption spectra) for non-adiabatic vibronic models. To illustrate the capabilities, the VECC method is also successfully applied to a large vibronic model for hexahelicene with 14 electronic states and 63 normal modes, developed in the group by Aranda and Santoro [J. Chem. Theory Comput. 17, 1691, (2021)].
Collapse
Affiliation(s)
- Songhao Bao
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Neil Raymond
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Marcel Nooijen
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Qin X, Hirata S. Finite-temperature many-body perturbation theory for anharmonic vibrations: Recursions, algebraic reduction, second-quantized reduction, diagrammatic rules, linked-diagram theorem, finite-temperature self-consistent field, and general-order algorithm. J Chem Phys 2023; 159:084114. [PMID: 37638629 DOI: 10.1063/5.0164326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
A unified theory is presented for finite-temperature many-body perturbation expansions of the anharmonic vibrational contributions to thermodynamic functions, i.e., the free energy, internal energy, and entropy. The theory is diagrammatically size-consistent at any order, as ensured by the linked-diagram theorem proved in this study, and, thus, applicable to molecular gases and solids on an equal footing. It is also a basis-set-free formalism, just like its underlying Bose-Einstein theory, capable of summing anharmonic effects over an infinite number of states analytically. It is formulated by the Rayleigh-Schrödinger-style recursions, generating sum-over-states formulas for the perturbation series, which unambiguously converges at the finite-temperature vibrational full-configuration-interaction limits. Two strategies are introduced to reduce these sum-over-states formulas into compact sum-over-modes analytical formulas. One is a purely algebraic method that factorizes each many-mode thermal average into a product of one-mode thermal averages, which are then evaluated by the thermal Born-Huang rules. Canonical forms of these rules are proposed, dramatically expediting the reduction process. The other is finite-temperature normal-ordered second quantization, which is fully developed in this study, including a proof of thermal Wick's theorem and the derivation of a normal-ordered vibrational Hamiltonian at finite temperature. The latter naturally defines a finite-temperature extension of size-extensive vibrational self-consistent field theory. These reduced formulas can be represented graphically as Feynman diagrams with resolvent lines, which include anomalous and renormalization diagrams. Two order-by-order and one general-order algorithms of computing these perturbation corrections are implemented and applied up to the eighth order. The results show no signs of Kohn-Luttinger-type nonconvergence.
Collapse
Affiliation(s)
- Xiuyi Qin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
3
|
Carvalho JR, Vidal LN. Calculation of absolute Raman scattering cross-sections using vibrational self-consistent field/vibrational configuration interaction wave functions. J Comput Chem 2022; 43:1484-1494. [PMID: 35731622 DOI: 10.1002/jcc.26951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Accepted: 06/02/2022] [Indexed: 11/12/2022]
Abstract
In the present study, the differential scattering cross-sections, depolarization ratios and Raman shifts of small molecular systems are obtained from configuration iteration wave functions of vibrational self-consistent field (VSCF) states. The transition polarizabilities were modeled using the Placzek approximation, neglecting those contributions not arising from the electric dipole mechanism. This theoretical approach is considered a good approximation for samples that absorb in the UV range if the excitation radiation falls in the visible region, as is the case of the molecules selected for the present study, namely: water, methane, and acetylene. Potential energy and electronic polarizability surfaces are calculated by the CCSD(T) and CC3 methods with aug-cc-p(C)V(T,Q,5)Z basis sets. The vibrational Hamiltonian includes the vibrational angular momentum contribution of the Watson kinetic energy operator. As expected, due to the variational nature of the VSCF and vibrational configuration interaction (VCI) methods, the Raman transition wavenumbers are substantially improved over the harmonic predictions. Surprisingly, the scattering cross-sections obtained using the harmonic approximation or the VSCF method better agrees with the experimental values than those cross-sections predicted using VCI wave functions. The more significant deviations of the VCI results from the experimental reference may be related to the significant uncertainties of the measured cross-sections. Still, it may also indicate that the VCI Raman transition moments may require a more accurate description of the electronic polarizability surface. Finally, the depolarization ratios calculated for H2 O and C2 D2 using harmonic and VCI wave functions have similar accuracy, whereas, for C2 H2 and C2 HD, the VCI results are more accurate.
Collapse
Affiliation(s)
- Jhonatas R Carvalho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Luciano N Vidal
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
4
|
Qin X, Hirata S. Finite-temperature vibrational full configuration interaction. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1949503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xiuyi Qin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
5
|
Nooijen M, Bao S. Normal ordered exponential approach to thermal properties and time-correlation functions: general theory and simple examples. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1980832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Marcel Nooijen
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Songhao Bao
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| |
Collapse
|
6
|
Yagi K, Sugita Y. Anharmonic Vibrational Calculations Based on Group-Localized Coordinates: Applications to Internal Water Molecules in Bacteriorhodopsin. J Chem Theory Comput 2021; 17:5007-5020. [PMID: 34296615 PMCID: PMC10986902 DOI: 10.1021/acs.jctc.1c00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient anharmonic vibrational method is developed exploiting the locality of molecular vibration. Vibrational coordinates localized to a group of atoms are employed to divide the potential energy surface (PES) of a system into intra- and inter-group contributions. Then, the vibrational Schrödinger equation is solved based on a PES, in which the inter-group coupling is truncated at the harmonic level while accounting for the intra-group anharmonicity. The method is applied to a pentagonal hydrogen bond network (HBN) composed of internal water molecules and charged residues in a membrane protein, bacteriorhodopsin. The PES is calculated by the quantum mechanics/molecular mechanics (QM/MM) calculation at the level of B3LYP-D3/aug-cc-pVDZ. The infrared (IR) spectrum is computed using a set of coordinates localized to each water molecule and amino acid residue by second-order vibrational quasi-degenerate perturbation theory (VQDPT2). Benchmark calculations show that the proposed method yields the N-D/O-D stretching frequencies with an error of 7 cm-1 at the cost reduced by more than five times. In contrast, the harmonic approximation results in a severe error of 150 cm-1. Furthermore, the size of QM regions is carefully assessed to find that the QM regions should include not only the pentagonal HBN itself but also its HB partners. VQDPT2 calculations starting from transient structures obtained by molecular dynamics simulations have shown that the structural sampling has a significant impact on the calculated IR spectrum. The incorporation of anharmonicity, sufficiently large QM regions, and structural samplings are of essential importance to reproduce the experimental IR spectrum. The computational spectrum paves the way for decoding the IR signal of strong HBNs and helps elucidate their functional roles in biomolecules.
Collapse
Affiliation(s)
- Kiyoshi Yagi
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory
for Biomolecular Function Simulation, RIKEN
Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi,
Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
7
|
White AF, Gao Y, Minnich AJ, Chan GKL. A coupled cluster framework for electrons and phonons. J Chem Phys 2020; 153:224112. [DOI: 10.1063/5.0033132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Alec F. White
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yang Gao
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Austin J. Minnich
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
8
|
Qin X, Hirata S. Anharmonic Phonon Dispersion in Polyethylene. J Phys Chem B 2020; 124:10477-10485. [PMID: 33169996 DOI: 10.1021/acs.jpcb.0c08493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The second-order Green's function method for anharmonic crystals has been applied to an infinite, periodic chain of polyethylene taking into account up to quartic force constants. The frequency-independent approximation to the Dyson self-energy gives rise to numerous divergent resonances, which are fortuitous. Instead, solving the Dyson equation self-consistently with a frequency-dependent self-energy resists divergences from resonances or zero-frequency acoustic vibrations. The calculated anharmonic phonon dispersion, which nonetheless displays many true resonances, and anharmonic phonon density of states furnish hitherto unknown details that explain smaller features of observed vibrational spectra.
Collapse
Affiliation(s)
- Xiuyi Qin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Hansen MB, Madsen NK, Christiansen O. Extended vibrational coupled cluster: Stationary states and dynamics. J Chem Phys 2020; 153:044133. [DOI: 10.1063/5.0015413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mads Bøttger Hansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Niels Kristian Madsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Ollitrault PJ, Baiardi A, Reiher M, Tavernelli I. Hardware efficient quantum algorithms for vibrational structure calculations. Chem Sci 2020; 11:6842-6855. [PMID: 32874524 PMCID: PMC7448527 DOI: 10.1039/d0sc01908a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022] Open
Abstract
We introduce a framework for the calculation of ground and excited state energies of bosonic systems suitable for near-term quantum devices and apply it to molecular vibrational anharmonic Hamiltonians. Our method supports generic reference modal bases and Hamiltonian representations, including the ones that are routinely used in classical vibrational structure calculations. We test different parametrizations of the vibrational wavefunction, which can be encoded in quantum hardware, based either on heuristic circuits or on the bosonic Unitary Coupled Cluster Ansatz. In particular, we define a novel compact heuristic circuit and demonstrate that it provides a good compromise in terms of circuit depth, optimization costs, and accuracy. We evaluate the requirements, number of qubits and circuit depth, for the calculation of vibrational energies on quantum hardware and compare them with state-of-the-art classical vibrational structure algorithms for molecules with up to seven atoms.
Collapse
Affiliation(s)
- Pauline J Ollitrault
- IBM Quantum , IBM Research - Zurich , Säumerstrasse 4 , 8803 Rüschlikon , Switzerland .
- Laboratory of Physical Chemistry , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland .
| | - Alberto Baiardi
- Laboratory of Physical Chemistry , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland .
| | - Markus Reiher
- Laboratory of Physical Chemistry , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland .
| | - Ivano Tavernelli
- IBM Quantum , IBM Research - Zurich , Säumerstrasse 4 , 8803 Rüschlikon , Switzerland .
| |
Collapse
|
11
|
Dinesh T, Ravichandran L, Prasad MD. An equation of motion approach for the vibrational transition energies in the effective harmonic oscillator formalism: the Random phase approximation. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Lowest order perturbative approximation to vibrational coupled cluster method in bosonic representation. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1692-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Hansen MB, Madsen NK, Zoccante A, Christiansen O. Time-dependent vibrational coupled cluster theory: Theory and implementation at the two-mode coupling level. J Chem Phys 2019; 151:154116. [DOI: 10.1063/1.5117207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Mads Bøttger Hansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| | - Niels Kristian Madsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| | - Alberto Zoccante
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Jasper AW, Harding LB, Knight C, Georgievskii Y. Anharmonic Rovibrational Partition Functions at High Temperatures: Tests of Reduced-Dimensional Models for Systems with up to Three Fluxional Modes. J Phys Chem A 2019; 123:6210-6228. [DOI: 10.1021/acs.jpca.9b03592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Bross DH, Yu HG, Harding LB, Ruscic B. Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited. J Phys Chem A 2019; 123:4212-4231. [DOI: 10.1021/acs.jpca.9b02295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David H. Bross
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hua-Gen Yu
- Division of Chemistry, Department of Energy and Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lawrence B. Harding
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Consortium for Advanced Science and Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
16
|
Schmitz G, Artiukhin DG, Christiansen O. Approximate high mode coupling potentials using Gaussian process regression and adaptive density guided sampling. J Chem Phys 2019; 150:131102. [DOI: 10.1063/1.5092228] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gunnar Schmitz
- Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
| | | | - Ove Christiansen
- Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
| |
Collapse
|
17
|
Panek PT, Hoeske AA, Jacob CR. On the choice of coordinates in anharmonic theoretical vibrational spectroscopy: Harmonic vs. anharmonic coupling in vibrational configuration interaction. J Chem Phys 2019; 150:054107. [PMID: 30736699 DOI: 10.1063/1.5083186] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
By a suitable choice of coordinates, the computational effort required for calculations of anharmonic vibrational spectra can be reduced significantly. By using suitable localized-mode coordinates obtained from an orthogonal transformation of the conventionally used normal-mode coordinates, anharmonic couplings between modes can be significantly reduced. However, such a transformation introduces harmonic couplings between the localized modes. To elucidate the role of these harmonic couplings, we consider the vibrational self-consistent field (VSCF)/vibrational configuration interaction (VCI) calculations for both few-mode model systems and for ethene as a molecular test case. We show that large harmonic couplings can result in significant errors in localized-mode L-VSCF/L-VCI calculations and study the convergence with respect to the size of the VCI excitation space. To further elucidate the errors introduced by harmonic couplings, we discuss the connection between L-VSCF/L-VCI and vibrational exciton models. With the help of our results, we propose an algorithm for the localization of normal modes in suitable subsets that are chosen to strictly limit the errors introduced by the harmonic couplings while still leading to maximally localized modes.
Collapse
Affiliation(s)
- Paweł T Panek
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Adrian A Hoeske
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R Jacob
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
18
|
Affiliation(s)
- Yuhong Liu
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Anthony D. Dutoi
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| |
Collapse
|
19
|
Faucheaux JA, Nooijen M, Hirata S. Similarity-transformed equation-of-motion vibrational coupled-cluster theory. J Chem Phys 2018; 148:054104. [PMID: 29421891 DOI: 10.1063/1.5004151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.
Collapse
Affiliation(s)
- Jacob A Faucheaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Marcel Nooijen
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
20
|
Jasper AW, Gruey ZB, Harding LB, Georgievskii Y, Klippenstein SJ, Wagner AF. Anharmonic Rovibrational Partition Functions for Fluxional Species at High Temperatures via Monte Carlo Phase Space Integrals. J Phys Chem A 2018; 122:1727-1740. [DOI: 10.1021/acs.jpca.7b11722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahren W. Jasper
- Chemical Sciences and Engineering
Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Zackery B. Gruey
- Chemical Sciences and Engineering
Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Lawrence B. Harding
- Chemical Sciences and Engineering
Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yuri Georgievskii
- Chemical Sciences and Engineering
Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Stephen J. Klippenstein
- Chemical Sciences and Engineering
Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Albert F. Wagner
- Chemical Sciences and Engineering
Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
21
|
Madsen NK, Godtliebsen IH, Losilla SA, Christiansen O. Tensor-decomposed vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure calculations. J Chem Phys 2018; 148:024103. [DOI: 10.1063/1.5001569] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | - Ove Christiansen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
22
|
Ravichandran L, Banik S. Performance of different density functionals for the calculation of vibrational frequencies with vibrational coupled cluster method in bosonic representation. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2177-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Schmitz G, Christiansen O. Accuracy of Frequencies Obtained with the Aid of Explicitly Correlated Wave Function Based Methods. J Chem Theory Comput 2017; 13:3602-3613. [PMID: 28686442 DOI: 10.1021/acs.jctc.7b00476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We asses the basis set convergence of harmonic frequencies using different explicitly correlated wave function based methods. All commonly available CCSD(T) variants as well as MP2-F12 and MP4(F12*) are considered, and a hierarchy of the different approaches is established. As for reaction and atomization energies, CCSD(F12*)(T*) is a close approximation to CCSD(F12)(T*) and clearly superior to the other tested approximations. The used scaling for the triples correction enhances the accuracy relative to CCSD(F12*)(T) especially for small basis sets and is very attractive since no additional computational costs are added. However, this scaling slightly breaks size consistency, and therefore we additionally study the accuracy of CCSD(F12*)(T*) and CCSD(F12*)(T) in the context of calculating anharmonic frequencies to check if this causes problems in the generation of the potential energy surface (PES). We find a fast basis set convergence for harmonic and anharmonic frequencies. Already in the cc-pVDZ-F12 basis, the RMSD to the CBS limit is only around 4-5 cm-1.
Collapse
Affiliation(s)
- Gunnar Schmitz
- Department of Chemistry, Aarhus University , Aarhus, Denmark
| | | |
Collapse
|
24
|
Banik S, Ravichandran L, Durga Prasad M. Raman spectral calculation by vibrational coupled-cluster method in bosonic representation. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1321153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Subrata Banik
- Advanced Center for Research in High Energy Materials, University of Hyderabad, Hyderabad, India
| | | | - M. Durga Prasad
- Advanced Center for Research in High Energy Materials, University of Hyderabad, Hyderabad, India
- School of Chemistry, University of Hyderabad, Hyderabad, India
| |
Collapse
|
25
|
Rai P, Sargsyan K, Najm H, Hermes MR, Hirata S. Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1288937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Prashant Rai
- Sandia National Laboratories, Livermore, CA, USA
| | | | - Habib Najm
- Sandia National Laboratories, Livermore, CA, USA
| | - Matthew R. Hermes
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
26
|
Yu HG. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion. J Chem Phys 2016; 145:084109. [DOI: 10.1063/1.4961642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hua-Gen Yu
- Division of Chemistry, Department of Energy and Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| |
Collapse
|
27
|
Faucheaux JA, Hirata S. Higher-order diagrammatic vibrational coupled-cluster theory. J Chem Phys 2015; 143:134105. [DOI: 10.1063/1.4931472] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jacob A. Faucheaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|