1
|
Tachikawa H, Izumi Y, Iyama T, Azumi K. Molecular Design of a Reversible Hydrogen Storage Device Composed of the Graphene Nanoflake-Magnesium-H 2 System. ACS OMEGA 2021; 6:7778-7785. [PMID: 33778289 PMCID: PMC7992170 DOI: 10.1021/acsomega.1c00243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/26/2021] [Indexed: 05/12/2023]
Abstract
Carbon materials such as graphene nanoflakes (GRs), carbon nanotubes, and fullerene can be widely used for hydrogen storage. In general, metal doping of these materials leads to an increase in their H2 storage density. In the present study, the binding energies of H2 to Mg species on GRs, GR-Mg m+ (m = 0-2), were calculated using density functional theory calculations. Mg has a wide range of atomic charges. In the case of GR-Mg (m = 0, Mg atom), the binding energy of one H2 molecule is close to 0, whereas those for m = 1 (Mg+) and 2 (Mg2+) are 0.23 and 13.2 kcal/mol (n = 1), respectively. These features suggest that GR-Mg2+ has a strong binding affinity toward H2, whereas GR-Mg+ has a weak binding energy. In addition, it was found that the first coordination shell is saturated by four H2 molecules, GR-Mg2+-(H2) n (n = 4). Next, direct ab initio molecular dynamics calculations were carried out for the electron-capture process of GR-Mg2+-(H2) n and a hole-capture process of GR-Mg+-(H2) n (n = 4). After electron capture, the H2 molecules left and dissociated from GR-Mg+: GR-Mg2+-(H2) n + e- → GR-Mg+ + (H2) n (H2 is released into the gas phase). In contrast, the H2 molecules were bound again to GR-Mg2+ after the hole capture of GR-Mg+: GR-Mg+ + (H2) n (gas phase) + hole → GR-Mg2+-(H2) n . On the basis of these calculations, a model device with reversible H2 adsorption-desorption properties was designed. These results strongly suggest that the GR-Mg system is capable of H2 adsorption-desorption reversible storage.
Collapse
Affiliation(s)
- Hiroto Tachikawa
- Division of Applied Chemistry,
Faculty
of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yoshiki Izumi
- Division of Applied Chemistry,
Faculty
of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Tetsuji Iyama
- Division of Applied Chemistry,
Faculty
of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kazuhisa Azumi
- Division of Applied Chemistry,
Faculty
of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
2
|
Bartolomei M, González-Lezana T, Campos-Martínez J, Hernández MI, Pirani F. Complexes of Alkali Metal Cations and Molecular Hydrogen: Potential Energy Surfaces and Bound States. J Phys Chem A 2019; 123:8397-8405. [PMID: 31490073 DOI: 10.1021/acs.jpca.9b05937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complexes between metal cations and molecular hydrogen are systems quite amenable for precise spectroscopic and theoretical studies, and at the same time, they are relevant for applications in hydrogen storage and astrochemistry. In this work, we report new intermolecular potential energy surfaces and rovibrational states calculations for complexes involving molecular hydrogen and alkaline metal cations, M+-H2 (M+ = Na+, K+, Rb+, Cs+). The intermolecular potentials, formulated in an internally consistent way to emphasize differences in the properties of the systems, are represented by simple analytical expressions whose parameters have been optimized from comparison with accurate ab initio calculations. Properties of the low-lying bound states-binding energies, frequencies, and rotational constants-are compared with previous measurements or computations and an overall good agreement is achieved, supporting the reliability of the present formulation. Variations of these properties as a function of the cation size and isotopic substitution, with a proper sequence of ortho and para rotational levels, are also discussed.
Collapse
Affiliation(s)
- Massimiliano Bartolomei
- Instituto de Física Fundamental , Consejo Superior de Investigaciones Científicas (IFF-CSIC) , Serrano 123 , 28006 Madrid , Spain
| | - Tomás González-Lezana
- Instituto de Física Fundamental , Consejo Superior de Investigaciones Científicas (IFF-CSIC) , Serrano 123 , 28006 Madrid , Spain
| | - José Campos-Martínez
- Instituto de Física Fundamental , Consejo Superior de Investigaciones Científicas (IFF-CSIC) , Serrano 123 , 28006 Madrid , Spain
| | - Marta I Hernández
- Instituto de Física Fundamental , Consejo Superior de Investigaciones Científicas (IFF-CSIC) , Serrano 123 , 28006 Madrid , Spain
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie , Universitá di Perugia , 06123 Perugia , Italy
| |
Collapse
|
3
|
Ortiz de Zárate J, Bartolomei M, González-Lezana T, Campos-Martínez J, Hernández MI, Pérez de Tudela R, Hernández-Rojas J, Bretón J, Pirani F, Kranabetter L, Martini P, Kuhn M, Laimer F, Scheier P. Snowball formation for Cs + solvation in molecular hydrogen and deuterium. Phys Chem Chem Phys 2019; 21:15662-15668. [PMID: 31271179 DOI: 10.1039/c9cp02017a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Interactions of atomic cations with molecular hydrogen are of interest for a wide range of applications in hydrogen technologies. These interactions are fairly strong despite being non-covalent, hence one can ask whether hydrogen molecules would form dense, solid-like, solvation shells around the ion (snowballs) or rather a more weakly bound compound. In this work, the interactions between Cs+ and H2 are studied both experimentally and computationally. Isotopic substitution of H2 by D2 is also investigated. On the one hand, helium nanodroplets doped with cesium and hydrogen or deuterium are ionized by electron impact and the (H2/D2)nCs+ (up to n = 30) clusters formed are identified via mass spectrometry. On the other hand, a new analytical potential energy surface, based on ab initio calculations, is developed and used to study cluster energies and structures by means of classical and quantum-mechanical Monte Carlo methods. The most salient features of the measured ion abundances are remarkably mimicked by the computed evaporation energies, particularly for the clusters composed of deuterium. This result supports the reliability of the present potential energy surface and allows us to recommend its use in related systems. Clusters with either twelve H2 or D2 molecules stand out for their stability and quasi-rigid icosahedral structures. However, the first solvation shell involves thirteen or fourteen molecules for hydrogenated or deuterated clusters, respectively. This shell retains its internal structure when extra molecules are added to the second shell and is nearly solid-like, especially for the deuterated clusters. The role played by three-body induction interactions as well as the rotational degrees of freedom is analyzed and they are found to be significant (up to 15% and 18%, respectively) for the molecules belonging to the first solvation shell.
Collapse
Affiliation(s)
- Josu Ortiz de Zárate
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - Massimiliano Bartolomei
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - Tomás González-Lezana
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - José Campos-Martínez
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - Marta I Hernández
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | | | - Javier Hernández-Rojas
- Departamento de Fsica and IUdEA, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain
| | - José Bretón
- Departamento de Fsica and IUdEA, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Lorenz Kranabetter
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Paul Martini
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin Kuhn
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Felix Laimer
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Paul Scheier
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Lindoy LP, Huang GS, Jordan MJT. Path integrals with higher order actions: Application to realistic chemical systems. J Chem Phys 2018; 148:074106. [PMID: 29471661 DOI: 10.1063/1.5000392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Quantum thermodynamic parameters can be determined using path integral Monte Carlo (PIMC) simulations. These simulations, however, become computationally demanding as the quantum nature of the system increases, although their efficiency can be improved by using higher order approximations to the thermal density matrix, specifically the action. Here we compare the standard, primitive approximation to the action (PA) and three higher order approximations, the Takahashi-Imada action (TIA), the Suzuki-Chin action (SCA) and the Chin action (CA). The resulting PIMC methods are applied to two realistic potential energy surfaces, for H2O and HCN-HNC, both of which are spectroscopically accurate and contain three-body interactions. We further numerically optimise, for each potential, the SCA parameter and the two free parameters in the CA, obtaining more significant improvements in efficiency than seen previously in the literature. For both H2O and HCN-HNC, accounting for all required potential and force evaluations, the optimised CA formalism is approximately twice as efficient as the TIA formalism and approximately an order of magnitude more efficient than the PA. The optimised SCA formalism shows similar efficiency gains to the CA for HCN-HNC but has similar efficiency to the TIA for H2O at low temperature. In H2O and HCN-HNC systems, the optimal value of the a1 CA parameter is approximately 13, corresponding to an equal weighting of all force terms in the thermal density matrix, and similar to previous studies, the optimal α parameter in the SCA was ∼0.31. Importantly, poor choice of parameter significantly degrades the performance of the SCA and CA methods. In particular, for the CA, setting a1 = 0 is not efficient: the reduction in convergence efficiency is not offset by the lower number of force evaluations. We also find that the harmonic approximation to the CA parameters, whilst providing a fourth order approximation to the action, is not optimal for these realistic potentials: numerical optimisation leads to better approximate cancellation of the fifth order terms, with deviation between the harmonic and numerically optimised parameters more marked in the more quantum H2O system. This suggests that numerically optimising the CA or SCA parameters, which can be done at high temperature, will be important in fully realising the efficiency gains of these formalisms for realistic potentials.
Collapse
Affiliation(s)
- Lachlan P Lindoy
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gavin S Huang
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|