1
|
Li M, Li L, Liu S, Zhang Q, Wang W, Wang Q. Insights into the catalytic effect of atmospheric organic trace species on the hydration of Criegee intermediates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174877. [PMID: 39047816 DOI: 10.1016/j.scitotenv.2024.174877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The bimolecular reactions between Criegee intermediates (CIs) and atmospheric trace species have been extensively investigated, with a particular focus on the reaction with water, while the catalytic role of atmospheric organic compounds in hydration reactions was often neglected. In this study, we employed quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations to investigate the catalytic effects of atmospheric organic amines, organic acids, and alcohols on the hydration reactions of CIs in the gas phase and at the gas-liquid interface. The catalytic reactions were found to follow a cyclic catalytic structure and a stepwise reaction mechanism. Gas-phase studies revealed that organic acids exhibited stronger catalytic effects compared to amines and alcohols, and the catalytic efficiency of amines and alcohols was similar to those of single water molecule. In addition, the catalytic reaction barriers of organic acids and alcohols were positively correlated with their gas-phase acidity (R2 = 0.94 to 0.97). A negative correlation was observed between the catalytic reaction barrier of amines and their gas-phase basicity (R2 = 0.84 to 0.90) and proton affinity (R2 = 0.84 to 0.92). At the gas-liquid interface, organic acids promoted the formation of hydroxyethyl hydroperoxide (HEHP, CH3CH(OH)(OOH)), organic acid ions, and H3O+, whereas the catalytic hydration of CIs by organic amines resulted in the formation of CH3CH(OH)OO and amine ions. Both HEHP and CH3CH(OH)OO can be further decomposed to form OH and HO2, or participate in new particles formation as precursors. This study complements the research gap on the reaction of CIs with water, providing valuable insights into the atmospheric sources of HEHP and HOx as well as the formation of secondary organic aerosols (SOAs).
Collapse
Affiliation(s)
- Mengyao Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Lei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Shanjun Liu
- Jinan Environmental Research Academy, Jinan 250100, PR China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Wengxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qiao Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
2
|
Wu H, Fu Y, Dong W, Fu B, Zhang DH. Full-dimensional neural network potential energy surface and dynamics of the CH 2OO + H 2O reaction. RSC Adv 2023; 13:13397-13404. [PMID: 37143908 PMCID: PMC10153484 DOI: 10.1039/d3ra02069j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023] Open
Abstract
An accurate global full-dimensional machine learning-based potential energy surface (PES) of the simplest Criegee intermediate (CH2OO) reaction with water monomer was developed based on the high level of extensive CCSD(T)-F12a/aug-cc-pVTZ calculations. This analytical global PES not only covers the regions of reactants to hydroxymethyl hydroperoxide (HMHP) intermediates, but also different end product channels, which facilities both the reliable and efficient kinetics and dynamics calculations. The rate coefficients calculated by the transition state theory with the interface to the full-dimensional PES agree well with the experimental results, indicating the accuracy of the current PES. Extensive quasi-classical trajectory (QCT) calculations were performed both from the bimolecular reaction CH2OO + H2O and from HMHP intermediate on the new PES. The product branching ratios of hydroxymethoxy radical (HOCH2O, HMO) + OH radical, formaldehyde (CH2O) + H2O2 and formic acid (HCOOH) + H2O were calculated. The reaction yields dominantly HMO + OH, because of the barrierless pathway from HMHP to this channel. The computed dynamical results for this product channel show the total available energy was deposited into the internal rovibrational excitation of HMO, and the energy release in OH and translational energy is limited. The large amount of OH radical found in the current study implies that the CH2OO + H2O reaction can provide crucially OH yield in Earth's atmosphere.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yanlin Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Wenrui Dong
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Hefei National Laboratory Hefei 230088 China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Hefei National Laboratory Hefei 230088 China
| |
Collapse
|
3
|
Begley JM, Aroeira GJR, Turney JM, Douberly GE, Schaefer HF. Enthalpies of formation for Criegee intermediates: A correlation energy convergence study. J Chem Phys 2023; 158:034302. [PMID: 36681629 DOI: 10.1063/5.0127588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Criegee intermediates, formed from the ozonolysis of alkenes, are known to have a role in atmospheric chemistry, including the modulation of the oxidizing capacity of the troposphere. Although studies have been conducted since their discovery, the synthesis of these species in the laboratory has ushered in a new wave of investigations of these structures, both theoretically and experimentally. In some of these theoretical studies, high-order corrections for correlation energy are included to account for the mid multi-reference character found in these systems. Many of these studies include a focus on kinetics; therefore, the calculated energies should be accurate (<1 kcal/mol in error). In this research, we compute the enthalpies of formation for a small set of Criegee intermediates, including higher-order coupled cluster corrections for correlation energy up to coupled cluster with perturbative quintuple excitations. The enthalpies of formation for formaldehyde oxide, anti-acetaldehyde oxide, syn-acetaldehyde oxide, and acetone oxide are presented at 0 K as 26.5, 15.6, 12.2, and 0.1 kcal mol-1, respectively. Additionally, we do not recommend the coupled cluster with perturbative quadruple excitations [CCSDT(Q)] energy correction, as it is approximately twice as large as that of the coupled cluster with full quadruple excitations (CCSDTQ). Half of the CCSDT(Q) energy correction may be included as a reliable, cost-effective estimation of CCSDTQ energies for Criegee intermediates.
Collapse
Affiliation(s)
- James M Begley
- Department of Chemistry, Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Gustavo J R Aroeira
- Department of Chemistry, Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Justin M Turney
- Department of Chemistry, Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Gary E Douberly
- Department of Chemistry, Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Henry F Schaefer
- Department of Chemistry, Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
4
|
Cabezas C, Daly AM, Endo Y. Reactivity and internal dynamics in the Criegee intermediate CH 2OOCO 2 system: A rotational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119945. [PMID: 34020382 DOI: 10.1016/j.saa.2021.119945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
The reaction system between the simplest Criegee intermediate, CH2OO, and the greenhouse gas CO2 has been investigated by Fourier transform microwave spectroscopy. The CH2OO-CO2 weakly bound complex was identified in the rotational spectrum, where inversion doublets due to the tunnelling motion between two equivalent configurations of the complex, with CO2 located at one side or the other side of the CH2OO plane, were observed. Using a two-state torsion-rotation Hamiltonian, a complete set of rotational and centrifugal distortion constants for both tunneling states were derived. In addition, the torsional energy difference between both states could be accurately determined, being 23.9687 MHz. The non-observation of the cycloaddition reaction product is in agreement with our ab initio calculations and with previous results that concluded that the reactivity of CIs toward CO2 is measured to be quite limited.
Collapse
Affiliation(s)
- Carlos Cabezas
- Instituto de Física Fundamental (IFF-CSIC), Group of Molecular Astrophysics, C/Serrano 121, 28006 Madrid, Spain
| | - Adam M Daly
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Yasuki Endo
- Department of Applied Chemistry, Science Building II, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan.
| |
Collapse
|
5
|
Chhantyal-Pun R, Khan MAH, Taatjes CA, Percival CJ, Orr-Ewing AJ, Shallcross DE. Criegee intermediates: production, detection and reactivity. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1792104] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Craig A. Taatjes
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA, USA
| | - Carl J. Percival
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | |
Collapse
|
6
|
Affiliation(s)
- Carlos Cabezas
- Instituto de Física Fundamental (IFF-CSIC), Group of Molecular Astrophysics, Madrid, Spain
| | | | - Yasuki Endo
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
7
|
Cabezas C, Endo Y. Probing Criegee intermediate reactions with methanol by FTMW spectroscopy. Phys Chem Chem Phys 2020; 22:13756-13763. [DOI: 10.1039/d0cp02174a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methoxymethyl hydroperoxide (HOOCH2OCH3) and methoxyethyl hydroperoxide (HOOC(CH3)HOCH3) have been characterized as the nascent reaction products from the reaction of methanol with CH2OO and CH3CHOO, respectively.
Collapse
Affiliation(s)
- Carlos Cabezas
- Instituto de Física Fundamental (IFF-CSIC)
- Group of Molecular Astrophysics
- 28006 Madrid
- Spain
| | - Yasuki Endo
- Department of Applied Chemistry
- Science Building II
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| |
Collapse
|
8
|
Cabezas C, Endo Y. Observation of hydroperoxyethyl formate from the reaction between the methyl Criegee intermediate and formic acid. Phys Chem Chem Phys 2020; 22:446-454. [DOI: 10.1039/c9cp05030b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydroperoxide ester, hydroperoxyethyl formate, has been characterized as the nascent reaction product obtained from the reaction of the Criegee intermediate, CH3CHOO, and formic acid.
Collapse
Affiliation(s)
- Carlos Cabezas
- Department of Applied Chemistry
- Science Building II
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Yasuki Endo
- Department of Applied Chemistry
- Science Building II
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| |
Collapse
|
9
|
Nakajima M, Endo Y. Fourier-transform microwave spectroscopy on weakly bound complexes of CH2OO with Ar, CO, and N2. J Chem Phys 2019. [DOI: 10.1063/1.5116165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Masakazu Nakajima
- Department of Basic Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yasuki Endo
- Department of Basic Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
10
|
Allen HM, Crounse JD, Bates KH, Teng AP, Krawiec-Thayer MP, Rivera-Rios JC, Keutsch FN, St. Clair JM, Hanisco TF, Møller KH, Kjaergaard HG, Wennberg PO. Kinetics and Product Yields of the OH Initiated Oxidation of Hydroxymethyl Hydroperoxide. J Phys Chem A 2018; 122:6292-6302. [DOI: 10.1021/acs.jpca.8b04577] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - Jean C. Rivera-Rios
- Paulson School of Engineering and Applied Sciences and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Frank N. Keutsch
- Paulson School of Engineering and Applied Sciences and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jason M. St. Clair
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, Maryland 21228, United States
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Thomas F. Hanisco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Kristian H. Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | | |
Collapse
|
11
|
Porterfield JP, Eibenberger S, Patterson D, McCarthy MC. The ozonolysis of isoprene in a cryogenic buffer gas cell by high resolution microwave spectroscopy. Phys Chem Chem Phys 2018; 20:16828-16834. [PMID: 29892741 DOI: 10.1039/c8cp02055h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a method to quantify reaction product ratios using high resolution microwave spectroscopy in a cryogenic buffer gas cell. We demonstrate the power of this method with the study of the ozonolysis of isoprene, CH2[double bond, length as m-dash]C(CH3)-CH[double bond, length as m-dash]CH2, the most abundant, non-methane hydrocarbon emitted into the atmosphere by vegetation. Isoprene is an asymmetric diene, and reacts with O3 at the 1,2 position to produce methyl vinyl ketone (MVK), formaldehyde, and a pair of carbonyl oxides: [CH3CO-CH[double bond, length as m-dash]CH2 + CH2[double bond, length as m-dash]OO] + [CH2[double bond, length as m-dash]O + CH3COO-CH[double bond, length as m-dash]CH2]. Alternatively, O3 could attack at the 3,4 position to produce methacrolein (MACR), formaldehyde, and two carbonyl oxides [CH2[double bond, length as m-dash]C(CH3)-CHO + CH2[double bond, length as m-dash]OO] + [CH2[double bond, length as m-dash]O + CH2[double bond, length as m-dash]C(CH3)-CHOO]. Purified O3 and isoprene were mixed for approximately 10 seconds under dilute (1.5-4% in argon) continuous flow conditions in an alumina tube held at 298 K and 5 Torr. Products exiting the tube were rapidly slowed and cooled within the buffer gas cell by collisions with cryogenic (4-7 K) He. High resolution chirped pulse microwave detection between 12 and 26 GHz was used to achieve highly sensitive (ppb scale), isomer-specific product quantification. We observed a ratio of MACR to MVK of 2.1 ± 0.4 under 1 : 1 ozone to isoprene conditions and 2.1 ± 0.2 under 2 : 1 ozone to isoprene conditions, a finding which is consistent with previous experimental results. Additionally, we discuss relative quantities of formic acid (HCOOH), an isomer of CH2[double bond, length as m-dash]OO, and formaldehyde (CH2[double bond, length as m-dash]O) under varying experimental conditions, and characterize the spectroscopic parameters of the singly-substituted 13C trans-isoprene and 13C anti-periplanar-methacrolein species. This work has the potential to be extended towards a complete branching ratio analysis, as well towards the ability to isolate, identify, and quantify new reactive intermediates in the ozonolysis of alkenes.
Collapse
Affiliation(s)
- Jessica P Porterfield
- Harvard-Smithsonian Center for Astrophysics, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
12
|
Cabezas C, Endo Y. The reactivity of the Criegee intermediate CH 3CHOO with water probed by FTMW spectroscopy. J Chem Phys 2018; 148:014308. [PMID: 29306294 DOI: 10.1063/1.5009033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reaction of Criegee intermediates with water is one of the dominant removal mechanisms for these species in the atmosphere. The reactivity of alkyl substituted Criegee intermediates has been shown to be affected by the nature and location of the substituents. CH3CHOO, acetaldehyde oxide, can be considered as a prototypical Criegee intermediate with a single alkyl substituent to examine the conformer specific reactivity for Criegee intermediates. Pulsed Fourier-transform microwave spectroscopy has been used to probe the products resulting from the reaction between CH3CHOO and water. The hydrogen-bonded complex between CH3CHOO and water together with the reaction product, hydroxyethyl hydroperoxide, were observed in the discharged plasma of a CH3CHI2/O2/water gas mixture. The experimentally determined rotational parameters support the identification of the complex between water and the syn-CH3CHOO conformer and two conformers of hydroxyethyl hydroperoxide, produced from the anti-CH3CHOO conformer and water.
Collapse
Affiliation(s)
- Carlos Cabezas
- Department of Applied Chemistry, Science Building II, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan
| | - Yasuki Endo
- Department of Applied Chemistry, Science Building II, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan
| |
Collapse
|
13
|
Khan MAH, Percival CJ, Caravan RL, Taatjes CA, Shallcross DE. Criegee intermediates and their impacts on the troposphere. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:437-453. [PMID: 29480909 DOI: 10.1039/c7em00585g] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Criegee intermediates (CIs), carbonyl oxides formed in ozonolysis of alkenes, play key roles in the troposphere. The decomposition of CIs can be a significant source of OH to the tropospheric oxidation cycle especially during nighttime and winter months. A variety of model-measurement studies have estimated surface-level stabilized Criegee intermediate (sCI) concentrations on the order of 1 × 104 cm-3 to 1 × 105 cm-3, which makes a non-negligible contribution to the oxidising capacity in the terrestrial boundary layer. The reactions of sCI with the water monomer and the water dimer have been found to be the most important bimolecular reactions to the tropospheric sCI loss rate, at least for the smallest carbonyl oxides; the products from these reactions (e.g. hydroxymethyl hydroperoxide, HMHP) are also of importance to the atmospheric oxidation cycle. The sCI can oxidise SO2 to form SO3, which can go on to form a significant amount of H2SO4 which is a key atmospheric nucleation species and therefore vital to the formation of clouds. The sCI can also react with carboxylic acids, carbonyl compounds, alcohols, peroxy radicals and hydroperoxides, and the products of these reactions are likely to be highly oxygenated species, with low vapour pressures, that can lead to nucleation and SOA formation over terrestrial regions.
Collapse
Affiliation(s)
- M A H Khan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - C J Percival
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109, USA
| | - R L Caravan
- Combustion Research Facility, Sandia National Laboratories, Mailstop 9055, Livermore, California, 94551 USA
| | - C A Taatjes
- Combustion Research Facility, Sandia National Laboratories, Mailstop 9055, Livermore, California, 94551 USA
| | - D E Shallcross
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
14
|
Sheps L, Rotavera B, Eskola AJ, Osborn DL, Taatjes CA, Au K, Shallcross DE, Khan MAH, Percival CJ. The reaction of Criegee intermediate CH 2OO with water dimer: primary products and atmospheric impact. Phys Chem Chem Phys 2018; 19:21970-21979. [PMID: 28805226 DOI: 10.1039/c7cp03265j] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid reaction of the smallest Criegee intermediate, CH2OO, with water dimers is the dominant removal mechanism for CH2OO in the Earth's atmosphere, but its products are not well understood. This reaction was recently suggested as a significant source of the most abundant tropospheric organic acid, formic acid (HCOOH), which is consistently underpredicted by atmospheric models. However, using time-resolved measurements of reaction kinetics by UV absorption and product analysis by photoionization mass spectrometry, we show that the primary products of this reaction are formaldehyde and hydroxymethyl hydroperoxide (HMHP), with direct HCOOH yields of less than 10%. Incorporating our results into a global chemistry-transport model further reduces HCOOH levels by 10-90%, relative to previous modeling assumptions, which indicates that the reaction CH2OO + water dimer by itself cannot resolve the discrepancy between the measured and predicted HCOOH levels.
Collapse
Affiliation(s)
- Leonid Sheps
- Combustion Research Facility, Sandia National Laboratories, 7011 East Ave., MS 9055, Livermore, California 94551, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cabezas C, Endo Y. The reaction between the methyl Criegee intermediate and hydrogen chloride: an FTMW spectroscopic study. Phys Chem Chem Phys 2018; 20:22569-22575. [DOI: 10.1039/c8cp04171g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of methyl substituted Criegee intermediate, CH3CHOO, with hydrogen chloride investigated by rotational spectroscopy.
Collapse
Affiliation(s)
- Carlos Cabezas
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Yasuki Endo
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| |
Collapse
|
16
|
Spectroscopic Characterization of the Reaction Products between the Criegee Intermediate CH2
OO and HCl. Chemphyschem 2017; 18:1860-1863. [DOI: 10.1002/cphc.201700446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 11/07/2022]
|
17
|
Sakamoto Y, Yajima R, Inomata S, Hirokawa J. Water vapour effects on secondary organic aerosol formation in isoprene ozonolysis. Phys Chem Chem Phys 2017; 19:3165-3175. [DOI: 10.1039/c6cp04521a] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A portion of stabilized Criegee intermediates formed in isoprene ozonolysis can be involved in SOA formation even under humid conditions.
Collapse
Affiliation(s)
- Yosuke Sakamoto
- Graduate School of Global Environmental Studies
- Kyoto University
- Kyoto
- Japan
- Graduate School of Human and Environmental Studies
| | - Ryoji Yajima
- Graduate School of Environmental Science
- Hokkaido University
- Sapporo
- Japan
| | - Satoshi Inomata
- Center for Global Environmental Research
- National Institute for Environmental Studies
- Tsukuba
- Japan
| | - Jun Hirokawa
- Faculty of Environmental Earth Science
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|
18
|
Lin LC, Chao W, Chang CH, Takahashi K, Lin JJM. Temperature dependence of the reaction of anti-CH3CHOO with water vapor. Phys Chem Chem Phys 2016; 18:28189-28197. [DOI: 10.1039/c6cp05171e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The kinetics of the reaction of anti-CH3CHOO with water vapor were investigated using transient UV absorption spectroscopy at temperatures from 288 to 328 K and 500 Torr.
Collapse
Affiliation(s)
- Liang-Chun Lin
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
- Department of Chemistry
| | - Wen Chao
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
- Department of Chemistry
| | - Chun-Hung Chang
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| | - Kaito Takahashi
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| | - Jim Jr-Min Lin
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
- Department of Chemistry
| |
Collapse
|