1
|
Hosseini AN, van der Spoel D. Martini on the Rocks: Can a Coarse-Grained Force Field Model Crystals? J Phys Chem Lett 2024; 15:1079-1088. [PMID: 38261634 PMCID: PMC10839907 DOI: 10.1021/acs.jpclett.4c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Computational chemistry is an important tool in numerous scientific disciplines, including drug discovery and structural biology. Coarse-grained models offer simple representations of molecular systems that enable simulations of large-scale systems. Because there has been an increase in the adoption of such models for simulations of biomolecular systems, critical evaluation is warranted. Here, the stability of the amyloid peptide and organic crystals is evaluated using the Martini 3 coarse-grained force field. The crystals change shape drastically during the simulations. Radial distribution functions show that the distance between backbone beads in β-sheets increases by ∼1 Å, breaking the crystals. The melting points of organic compounds are much too low in the Martini force field. This suggests that Martini 3 lacks the specific interactions needed to accurately simulate peptides or organic crystals without imposing artificial restraints. The problems may be exacerbated by the use of the 12-6 potential, suggesting that a softer potential could improve this model for crystal simulations.
Collapse
Affiliation(s)
- A. Najla Hosseini
- Department of Cell and Molecular
Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
| | - David van der Spoel
- Department of Cell and Molecular
Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|
2
|
Fayaz-Torshizi M, Graham EJ, Adjiman CS, Galindo A, Jackson G, Müller EA. SAFT- γ Force Field for the Simulation of Molecular Fluids 9: Coarse-Grained Models for Polyaromatic Hydrocarbons Describing Thermodynamic, Interfacial, Structural, and Transport Properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Morillo N, Martínez-Haya B, Cuetos A. Tailoring the phase diagram of discotic mesogens. SOFT MATTER 2021; 17:8693-8704. [PMID: 34519327 DOI: 10.1039/d1sm00624j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The computational modelling of discotic molecules is a central topic in colloid science that is key for the smart design of a broad range of modern functional materials. This work lays out a versatile interaction model capable of exposing the rich mesogenic behaviour of discotics. A single coarse-grained spheroplatelet core framework is employed to generate a variety of pair interaction anisotropy classes, favouring specific relative orientations of the particles (stacked, side-side, crossed, T-shaped). This paves the way for the systematic tailoring of the discotic liquid phase diagram. Monte Carlo simulations are performed for an ensemble of case studies to illustrate the correlation between the topology of the interaction and the formation of stable nematic, smectic and columnar phases, as well as of less common cubatic, uniaxial and biaxial columnar domains.
Collapse
Affiliation(s)
- Neftalí Morillo
- Department of Theoretical Physics, Universidad Complutense de Madrid, Avda. de la Complutense S/N, 28040 Madrid, Spain.
| | - Bruno Martínez-Haya
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, 41013 Sevilla, Spain
| | - Alejandro Cuetos
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, 41013 Sevilla, Spain
| |
Collapse
|
4
|
Dontot L, Spiegelman F, Zamith S, Rapacioli M. Dependence upon charge of the vibrational spectra of small Polycyclic Aromatic Hydrocarbon clusters: the example of pyrene. THE EUROPEAN PHYSICAL JOURNAL. D, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 2020; 74:216. [PMID: 33597829 PMCID: PMC7116754 DOI: 10.1140/epjd/e2020-10081-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/18/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Infrared spectra are computed for neutral and cationic clusters of Polycyclic Aromatic Hydrocarbon clusters, namely( C 16 H 10 ) n = 1 , 4 ( 0 / + ) , using the Density Functional based Tight Binding scheme combined with a Configuration Interaction scheme (DFTB-CI) in the double harmonic approximation. Cross-comparison is carried out with DFT and simple DFTB. Similarly to the monomer cation, the IR spectra of cluster cations are characterized by a depletion of the intensity of the CH stretch modes around 3000 cm-1, with a weak revival for n = 3 and 4. The in-plane CCC modes in the region 1400-2000 cm-1 are enhanced while the CH bending modes in the range 700-1000 cm-1 are significantly weakened with respect to the monomer cation, in particular for n = 2. Finally, soft modes corresponding to diedral fluctuations of the monomers within the central stack of the ion structure, possibly mixed with monomer folding, are also observed in the region 70-120 cm-1.
Collapse
Affiliation(s)
- Léo Dontot
- Laboratoire de Chimie et Physique Quantique (LCPQ/IRSAMC), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantique (LCPQ/IRSAMC), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Sébastien Zamith
- Laboratoire Collisions Agrégats Réactivité (LCAR/IRSAMC), UMR5589, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantique (LCPQ/IRSAMC), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
5
|
Heinemann T, Jung Y. Coarse-graining strategy for modeling effective, highly diffusive fluids with reduced polydispersity: A dynamical study. J Chem Phys 2020; 153:104509. [PMID: 32933276 DOI: 10.1063/5.0009156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We present a coarse-graining strategy for reducing the number of particle species in mixtures to achieve a simpler system with higher diffusion while preserving the total particle number and characteristic dynamic features. As a system of application, we chose the bidisperse Lennard-Jones-like mixture, discovered by Kob and Andersen [Phys. Rev. Lett. 73, 1376 (1994)], possessing a slow dynamics due to the fluid's multi-component character with its apparently unconventional choice for the pair potential of the type-A-type-B arrangement. We further established in a so-formed coarse-grained and temperature-independent monodisperse system an equilibrium structure with a radial distribution function resembling its mixture counterpart. This one-component system further possesses similar dynamic features such as glass transition temperature and critical exponents while subjected to Newtonian mechanics. This strategy may finally lead to the manufacturing of new nanoparticle/colloidal fluids by experimentally modeling only the outcoming effective pair potential(s) and no other macroscopic quantity.
Collapse
Affiliation(s)
- Thomas Heinemann
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - YounJoon Jung
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
6
|
Stevens K, Tran-Duc T, Thamwattana N, Hill JM. Continuum Modelling for Interacting Coronene Molecules with a Carbon Nanotube. NANOMATERIALS 2020; 10:nano10010152. [PMID: 31952252 PMCID: PMC7022502 DOI: 10.3390/nano10010152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/30/2019] [Accepted: 01/10/2020] [Indexed: 11/21/2022]
Abstract
The production of single dimensional carbon structures has recently been made easier using carbon nanotubes. We consider here encapsulated coronene molecules, which are flat and circular-shaped polycyclic aromatic hydrocarbons, inside carbon nanotubes. Depending on the radius of the nanotube, certain specific configurations of the coronene molecules can be achieved that give rise to the formation of stacked columns or aid in forming nanoribbons. Due to their symmetrical structure, a coronene molecule may be modelled by three inner circular rings of carbon atoms and one outer circular ring of hydrogen atoms, while the carbon nanotube is modelled as a circular tube. Using the continuous model and the Lennard-Jones potential, we are able to analytically formulate an expression for the potential energy for a coronene dimer and coronene inside a carbon nanotube. Subsequently, stacking of coronene molecules inside a nanotube is investigated. We find that the minimum energy tilt angle of coronenes in a stack differs from that of a single coronene within the same nanotube. More specifically, for both (18, 0) and (19, 0) zigzag carbon nanotube, we find that the minimum energy tilt angles of the single coronene case (≈42° and ≈20° respectively) do not occur in the stack model.
Collapse
Affiliation(s)
- Kyle Stevens
- School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia (N.T.)
- Correspondence:
| | - Thien Tran-Duc
- School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia (N.T.)
| | - Ngamta Thamwattana
- School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia (N.T.)
| | - James M. Hill
- School of Information Technology and Mathematical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia;
| |
Collapse
|
7
|
Zamitha S, Ji MC, L’Hermite JM, Joblin C, Dontot L, Rapacioli M, Spiegelman F. Thermal evaporation of pyrene clusters. J Chem Phys 2019; 151:194303. [PMID: 31757155 PMCID: PMC6908449 DOI: 10.1063/1.5100264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This work presents a study of the thermal evaporation and stability of pyrene (C16H10)n clusters. Thermal evaporation rates of positively charged mass-selected clusters are measured for sizes in the range n = 3-40 pyrene units. The experimental setup consists of a gas aggregation source, a thermalization chamber, and a time of flight mass spectrometer. A microcanonical Phase Space Theory (PST) simulation is used to determine the dissociation energies of pyrene clusters by fitting the experimental breakdown curves. Calculations using the Density Functional based Tight Binding combined with a Configuration Interaction (CI-DFTB) model and a hierarchical optimization scheme are also performed in the range n = 2-7 to determine the harmonic frequencies and a theoretical estimation of the dissociation energies. The frequencies are used in the calculations of the density of states needed in the PST simulations, assuming an extrapolation scheme for clusters larger than 7 units. Using the PST model with a minimal set of adjustable parameters, we obtain good fits of the experimental breakdown curves over the full studied size range. The approximations inherent to the PST simulation and the influence of the used parameters are carefully estimated. The derived dissociation energies show significant variations over the studied size range. Compared with neutral clusters, significantly higher values of the dissociation energies are obtained for the smaller sizes and attributed to charge resonance in line with CI-DFTB calculations.
Collapse
Affiliation(s)
- Sébastien Zamitha
- Laboratoire Collisions Agrégats Réactivité (LCAR/IRSAMC) UMR5589, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Ming-Chao Ji
- Institut de Recherche en Astrophysique et Planétologie (IRAP) UMR5277, Université de Toulouse, CNRS, CNES, 9 avenue du Colonel Roche, F-31028 Toulouse, France
| | - Jean-Marc L’Hermite
- Laboratoire Collisions Agrégats Réactivité (LCAR/IRSAMC) UMR5589, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Christine Joblin
- Institut de Recherche en Astrophysique et Planétologie (IRAP) UMR5277, Université de Toulouse, CNRS, CNES, 9 avenue du Colonel Roche, F-31028 Toulouse, France
| | - Léo Dontot
- Institut de Recherche en Astrophysique et Planétologie (IRAP) UMR5277, Université de Toulouse, CNRS, CNES, 9 avenue du Colonel Roche, F-31028 Toulouse, France
- Laboratoire de Chimie et Physique Quantiques (LCPQ/IRSAMC) UMR5626, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques (LCPQ/IRSAMC) UMR5626, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantiques (LCPQ/IRSAMC) UMR5626, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
8
|
Dontot L, Spiegelman F, Rapacioli M. Structures and Energetics of Neutral and Cationic Pyrene Clusters. J Phys Chem A 2019; 123:9531-9543. [PMID: 31589446 PMCID: PMC6917508 DOI: 10.1021/acs.jpca.9b07007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The low energy structures of neutral and cationic pyrene clusters containing up to seven molecules are searched through a global exploration scheme combining parallel tempering Monte Carlo algorithm and local quenches. The potential energies are computed at the density functional based tight binding level for neutrals and configuration interaction density functional based tight binding for cations in order to treat properly the charge resonance. New simplified versions of these schemes are also presented and used during the global exploration. Neutral clusters are shown to be made of compact assemblies of sub-blocs containing up to three units whereas cations present a charged dimer or trimer core surrounded by neutral units. The structural features of the clusters are analyzed and correlated for the cation with the charge distribution. The stability of clusters is also discussed in terms of cohesive and evaporation energies. Adiabatic and vertical ionization potentials are also discussed.
Collapse
Affiliation(s)
- Léo Dontot
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
9
|
Aggregation Behavior of Model Asphaltenes Revealed from Large-Scale Coarse-Grained Molecular Simulations. J Phys Chem B 2019; 123:2380-2396. [PMID: 30735393 DOI: 10.1021/acs.jpcb.8b12295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fully atomistic simulations of models of asphaltenes in simple solvents have allowed the study of trends in aggregation phenomena to understand the underlying role played by molecular structure. The detail included at this scale of molecular modeling is, however, at odds with the required spatial and temporal resolution needed to fully understand asphaltene aggregation. The computational cost required to explore the relevant scales can be reduced by employing coarse-grained (CG) models, which consist of lumping a few atoms into a single segment that is characterized by effective interactions. In this work, CG force fields developed via the statistical associating fluid theory (SAFT-γ) [ Müller , E. A. ; Jackson , G. Annu. Rev. Chem. Biomol. Eng. 5 , 2014 , 405 - 427 ] equation of state (EoS) provide a reliable pathway to link the molecular description with macroscopic thermophysical data. A recent modification of the SAFT-VR EoS [ Müller , E. A. ; Mejía , A. Langmuir 33 , 2017 , 11518 - 11529 ], which allows for the parameterization of homonuclear rings, is selected as the starting point to develop CG models for polycyclic aromatic hydrocarbons. The new aromatic-core models, along with others published for simpler organic molecules, are adopted for the construction of asphaltene models by combining different chemical moieties in a group-contribution fashion. We apply the procedure to two previously reported asphaltene models and perform molecular dynamics simulations to validate the coarse-grained representation against benchmark systems of 27 asphaltenes in a pure solvent (toluene or heptane) described in a fully atomistic fashion. An excellent match between both levels of description is observed for the cluster size, radii of gyration, and relative-shape-anisotropy-factor distributions. We exploit the advantages of the CG representation by simulating systems containing up to 2000 asphaltene molecules in an explicit solvent investigating the effect of asphaltene concentration, solvent composition, and temperature on aggregation. By studying large systems facilitated by the use of CG models, we observe stable continuous distributions of molecular aggregates at conditions away from the two-phase precipitation point. As a further example application, a widely accepted interpretation of cluster-size distributions in asphaltenic systems is challenged by performing system-size tests, reversibility checks, and a time-dependence analysis. The proposed coarse-graining procedure is seen to be general and predictive and, hence, can be applied to other asphaltenic molecular structures.
Collapse
|
10
|
Hernández-Rojas J, Calvo F. Coarse-grained modeling of the nucleation of polycyclic aromatic hydrocarbons into soot precursors. Phys Chem Chem Phys 2019; 21:5123-5132. [PMID: 30766988 DOI: 10.1039/c8cp07724j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation and physical growth of polycyclic aromatic hydrocarbon (PAH) molecules was simulated using a coarse-grained (CG) approach based on the Paramonov-Yaliraki (PY) potential and a stochastic Monte Carlo framework, following earlier efforts in which the structure [Phys. Chem. Chem. Phys., 2016, 18, 13736] and equilibrium thermodynamics [Phys. Chem. Chem. Phys., 2017, 19, 1884] were investigated and critically compared to the predictions of all-atom models. Homomolecular and heteromolecular assemblies of pyrene, coronene, and circumcoronene were considered at various temperatures and compositions, and the distributions of aggregation products were characterized. Under the simulated conditions, and in agreement with earlier studies, the clusters are rather small and, in the case of pyrene-rich systems, only formed below 1000 K. The clusters obtained by spontaneous aggregation of isolated molecules are statistically analysed. For the selected sizes of tetramers and octamers, broad distributions of isomers are obtained with a clear entropic stabilization. In heteronuclear assemblies, our results suggest a minor spontaneous segregation towards pure and equi concentrations at variance with purely statistical expectations.
Collapse
Affiliation(s)
- J Hernández-Rojas
- Departamento de Física and IUdEA, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain.
| | | |
Collapse
|
11
|
Goulart M, Kuhn M, Rasul B, Postler J, Gatchell M, Zettergren H, Scheier P, Echt O. The structure of coronene cluster ions inferred from H 2 uptake in the gas phase. Phys Chem Chem Phys 2018; 19:27968-27973. [PMID: 29022968 DOI: 10.1039/c7cp04999d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mass spectra of helium nanodroplets doped with H2 and coronene feature anomalies in the ion abundance that reveal anomalies in the energetics of adsorption sites. The coronene monomer ion strongly adsorbs up to n = 38 H2 molecules indicating a commensurate solvation shell that preserves the D6h symmetry of the substrate. No such feature is seen in the abundance of the coronene dimer through tetramer complexed with H2; this observation rules out a vertical columnar structure. Instead we see evidence for a columnar structure in which adjacent coronenes are displaced in parallel, forming terraces that offer additional strong adsorption sites. The experimental value for the number of adsorption sites per terrace, approximately six, barely depends on the number of coronene molecules. The displacement estimated from this number exceeds the value reported in several theoretical studies of the bare, neutral coronene dimer.
Collapse
Affiliation(s)
- Marcelo Goulart
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Härtel A. Structure of electric double layers in capacitive systems and to what extent (classical) density functional theory describes it. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:423002. [PMID: 28898203 DOI: 10.1088/1361-648x/aa8342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ongoing scientific interest is aimed at the properties and structure of electric double layers (EDLs), which are crucial for capacitive energy storage, water treatment, and energy harvesting technologies like supercapacitors, desalination devices, blue engines, and thermocapacitive heat-to-current converters. A promising tool to describe their physics on a microscopic level is (classical) density functional theory (DFT), which can be applied in order to analyze pair correlations and charge ordering in the primitive model of charged hard spheres. This simple model captures the main properties of ionic liquids and solutions and it predicts many of the phenomena that occur in EDLs. The latter often lead to anomalous response in the differential capacitance of EDLs. This work constructively reviews the powerful theoretical framework of DFT and its recent developments regarding the description of EDLs. It explains to what extent current approaches in DFT describe structural ordering and in-plane transitions in EDLs, which occur when the corresponding electrodes are charged. Further, the review briefly summarizes the history of modeling EDLs, presents applications, and points out limitations and strengths in present theoretical approaches. It concludes that DFT as a sophisticated microscopic theory for ionic systems is expecting a challenging but promising future in both fundamental research and applications in supercapacitive technologies.
Collapse
Affiliation(s)
- Andreas Härtel
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
13
|
Nanostructural origin of blue fluorescence in the mineral karpatite. Sci Rep 2017; 7:9867. [PMID: 28852091 PMCID: PMC5575318 DOI: 10.1038/s41598-017-10261-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/07/2017] [Indexed: 11/08/2022] Open
Abstract
The colour of crystals is a function of their atomic structure. In the case of organic crystals, it is the spatial relationships between molecules that determine the colour, so the same molecules in the same arrangement should produce crystals of the same colour, regardless of whether they arise geologically or synthetically. There is a naturally-occurring organic crystal known as karpatite which is prized for its beautiful blue fluorescence under ultra-violet illumination. When grown under laboratory conditions however, the crystals fluoresce with an intense green colour. For 20 years, this difference has been thought to be due to chemical impurities in the laboratory-grown material. Using electron microscopy coupled with fluorescence spectroscopy and X-Ray diffraction, we report here that this disparity is instead due to differences in the structure of the crystals at the nanoscale. The results show that in nature, karpatite has a nanotexture that is not present in the synthetic crystals, which enables different photonic pathways and therefore a blue, rather than green colour whilst undergoing fluorescence.
Collapse
|
14
|
Heinemann T, Klapp SHL. Coarse-graining strategy for molecular pair interactions: A reaction coordinate study for two- and three-dimensional systems. J Chem Phys 2017; 146:164107. [PMID: 28456203 DOI: 10.1063/1.4981207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We investigate and provide optimal sets of reaction coordinates for mixed pairs of molecules displaying polar, uniaxial, or spherical symmetry in two and three dimensions. These coordinates are non-redundant, i.e., they implicitly involve the molecules' symmetries. By tabulating pair interactions in these coordinates, resulting tables are thus minimal in length and require a minimal memory space. The intended fields of application are computer simulations of large ensembles of molecules or colloids with rather complex interactions in a fluid or liquid crystalline phase at low densities. Using effective interactions directly in the form of tables can help bridging the time and length scales without introducing errors stemming from any modeling procedure. Finally, we outline an exemplary computational methodology for gaining an effective pair potential in these coordinates, based on the Boltzmann inversion principle, by providing a step-by-step recipe.
Collapse
Affiliation(s)
- Thomas Heinemann
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
15
|
Hernández-Rojas J, Calvo F, Niblett S, Wales DJ. Dynamics and thermodynamics of the coronene octamer described by coarse-grained potentials. Phys Chem Chem Phys 2017; 19:1884-1895. [DOI: 10.1039/c6cp07671h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coarse-grained models developed for polycyclic aromatic hydrocarbons based on the Paramonov–Yaliraki potential have been employed to investigate the finite temperature thermodynamics, out-of-equilibrium dynamics, energy landscapes, and rearrangement pathways of the coronene octamer.
Collapse
Affiliation(s)
| | - F. Calvo
- Laboratoire Interdisciplinaire de Physique
- Université Grenoble Alpes and CNRS
- 38402 St Martin d’Hères
- France
| | - S. Niblett
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - D. J. Wales
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| |
Collapse
|
16
|
Poier P, Bačová P, Moreno AJ, Likos CN, Blaak R. Anisotropic effective interactions and stack formation in mixtures of semiflexible ring polymers. SOFT MATTER 2016; 12:4805-4820. [PMID: 27117080 DOI: 10.1039/c6sm00430j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
By means of extensive computer simulations, we investigate the formation of columnar structures (stacks) in concentrated solutions of semiflexible ring polymers. To characterize the stacks we employ an algorithm that identifies tube-like structures in the simulation cell. Stacks are found both in the real system and in the fluid of soft disks interacting through the effective anisotropic pair potential derived for the rings [P. Poier et al., Macromolecules, 2015, 48, 4983-4997]. Furthermore, we investigate binary mixtures of cluster-forming and non-cluster-forming rings. We find that monodispersity is not a requirement for stack formation. The latter is found for a broad range of mixture compositions, though the columns in the mixtures exhibit important differences to those observed in the monodisperse case. We extend the anisotropic effective model to mixtures. We show that it correctly predicts stack formation and constitutes a significant improvement with respect to the usual isotropic effective description based only on macromolecular centers-of-mass.
Collapse
Affiliation(s)
- Peter Poier
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria.
| | - Petra Bačová
- Centro de Física de Materiales (CSIC-UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain and Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Greece
| | - Angel J Moreno
- Centro de Física de Materiales (CSIC-UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain and Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria.
| | - Ronald Blaak
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria.
| |
Collapse
|
17
|
Heinemann T, Antlanger M, Mazars M, Klapp SHL, Kahl G. Equilibrium structures of anisometric, quadrupolar particles confined to a monolayer. J Chem Phys 2016; 144:074504. [PMID: 26896992 DOI: 10.1063/1.4941585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the structural properties of a two-dimensional system of ellipsoidal particles carrying a linear quadrupole moment in their center. These particles represent a simple model for a variety of uncharged, non-polar conjugated organic molecules. Using optimization tools based on ideas of evolutionary algorithms, we first examine the ground state structures as we vary the aspect ratio of the particles and the pressure. Interestingly, we find, besides the intuitively expected T-like configurations, a variety of complex structures, characterized with up to three different particle orientations. In an effort to explore the impact of thermal fluctuations, we perform constant-pressure molecular dynamics simulations within a range of rather low temperatures. We observe that ground state structures formed by particles with a large aspect ratio are in particular suited to withstand fluctuations up to rather high temperatures. Our comprehensive investigations allow for a deeper understanding of molecular or colloidal monolayer arrangements under the influence of a typical electrostatic interaction on a coarse-grained level.
Collapse
Affiliation(s)
- Thomas Heinemann
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany
| | - Moritz Antlanger
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| | - Martial Mazars
- Laboratoire de Physique Théorique (UMR 8627), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany
| | - Gerhard Kahl
- Institut für Theoretische Physik and Center for Computational Materials Science (CMS), TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| |
Collapse
|
18
|
Hernández-Rojas J, Calvo F, Wales DJ. Coarse-graining the structure of polycyclic aromatic hydrocarbons clusters. Phys Chem Chem Phys 2016; 18:13736-40. [DOI: 10.1039/c6cp00592f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Clusters of polycyclic aromatic hydrocarbons are essential components of soot and may concentrate a significant fraction of carbon matter in the interstellar medium.
Collapse
Affiliation(s)
| | - F. Calvo
- Laboratoire Interdisciplinaire de Physique
- Université Grenoble Alpes and CNRS
- 38402 St Martin d'Hères
- France
| | - D. J. Wales
- University Chemical Laboratories
- Cambridge CB2 1EW
- UK
| |
Collapse
|