1
|
Woods EJ, Kannan D, Sharpe DJ, Swinburne TD, Wales DJ. Analysing ill-conditioned Markov chains. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220245. [PMID: 37211032 PMCID: PMC10200351 DOI: 10.1098/rsta.2022.0245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/15/2022] [Indexed: 05/23/2023]
Abstract
Discrete state Markov chains in discrete or continuous time are widely used to model phenomena in the social, physical and life sciences. In many cases, the model can feature a large state space, with extreme differences between the fastest and slowest transition timescales. Analysis of such ill-conditioned models is often intractable with finite precision linear algebra techniques. In this contribution, we propose a solution to this problem, namely partial graph transformation, to iteratively eliminate and renormalize states, producing a low-rank Markov chain from an ill-conditioned initial model. We show that the error induced by this procedure can be minimized by retaining both the renormalized nodes that represent metastable superbasins, and those through which reactive pathways concentrate, i.e. the dividing surface in the discrete state space. This procedure typically returns a much lower rank model, where trajectories can be efficiently generated with kinetic path sampling. We apply this approach to an ill-conditioned Markov chain for a model multi-community system, measuring the accuracy by direct comparison with trajectories and transition statistics. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- Esmae J. Woods
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Deepti Kannan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Daniel J. Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Thomas D. Swinburne
- CNRS, CINaM UMR, Aix-Marseille Université, 7325, Campus de Luminy, 13288 Marseille, France
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
2
|
Bone RA, Green JR. Optimizing dynamical functions for speed with stochastic paths. J Chem Phys 2022; 157:224101. [PMID: 36546817 DOI: 10.1063/5.0125479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Living systems are built from microscopic components that function dynamically; they generate work with molecular motors, assemble and disassemble structures such as microtubules, keep time with circadian clocks, and catalyze the replication of DNA. How do we implement these functions in synthetic nanostructured materials to execute them before the onset of dissipative losses? Answering this question requires a quantitative understanding of when we can improve performance and speed while minimizing the dissipative losses associated with operating in a fluctuating environment. Here, we show that there are four modalities for optimizing dynamical functions that can guide the design of nanoscale systems. We analyze Markov models that span the design space: a clock, ratchet, replicator, and self-assembling system. Using stochastic thermodynamics and an exact expression for path probabilities, we classify these models of dynamical functions based on the correlation of speed with dissipation and with the chosen performance metric. We also analyze random networks to identify the model features that affect their classification and the optimization of their functionality. Overall, our results show that the possible nonequilibrium paths can determine our ability to optimize the performance of dynamical functions, despite ever-present dissipation, when there is a need for speed.
Collapse
Affiliation(s)
- Rebecca A Bone
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Jason R Green
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| |
Collapse
|
3
|
Sharpe DJ, Wales DJ. Numerical analysis of first-passage processes in finite Markov chains exhibiting metastability. Phys Rev E 2021; 104:015301. [PMID: 34412280 DOI: 10.1103/physreve.104.015301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/29/2021] [Indexed: 12/19/2022]
Abstract
We describe state-reduction algorithms for the analysis of first-passage processes in discrete- and continuous-time finite Markov chains. We present a formulation of the graph transformation algorithm that allows for the evaluation of exact mean first-passage times, stationary probabilities, and committor probabilities for all nonabsorbing nodes of a Markov chain in a single computation. Calculation of the committor probabilities within the state-reduction formalism is readily generalizable to the first hitting problem for any number of alternative target states. We then show that a state-reduction algorithm can be formulated to compute the expected number of times that each node is visited along a first-passage path. Hence, all properties required to analyze the first-passage path ensemble (FPPE) at both a microscopic and macroscopic level of detail, including the mean and variance of the first-passage time distribution, can be computed using state-reduction methods. In particular, we derive expressions for the probability that a node is visited along a direct transition path, which proceeds without returning to the initial state, considering both the nonequilibrium and equilibrium (steady-state) FPPEs. The reactive visitation probability provides a rigorous metric to quantify the dynamical importance of a node for the productive transition between two endpoint states and thus allows the local states that facilitate the dominant transition mechanisms to be readily identified. The state-reduction procedures remain numerically stable even for Markov chains exhibiting metastability, which can be severely ill-conditioned. The rare event regime is frequently encountered in realistic models of dynamical processes, and our methodology therefore provides valuable tools for the analysis of Markov chains in practical applications. We illustrate our approach with numerical results for a kinetic network representing a structural transition in an atomic cluster.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, and Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, and Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
4
|
Sharpe DJ, Wales DJ. Graph transformation and shortest paths algorithms for finite Markov chains. Phys Rev E 2021; 103:063306. [PMID: 34271741 DOI: 10.1103/physreve.103.063306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
The graph transformation (GT) algorithm robustly computes the mean first-passage time to an absorbing state in a finite Markov chain. Here we present a concise overview of the iterative and block formulations of the GT procedure and generalize the GT formalism to the case of any path property that is a sum of contributions from individual transitions. In particular, we examine the path action, which directly relates to the path probability, and analyze the first-passage path ensemble for a model Markov chain that is metastable and therefore numerically challenging. We compare the mean first-passage path action, obtained using GT, with the full path action probability distribution simulated efficiently using kinetic path sampling, and with values for the highest-probability paths determined by the recursive enumeration algorithm (REA). In Markov chains representing realistic dynamical processes, the probability distributions of first-passage path properties are typically fat-tailed and therefore difficult to converge by sampling, which motivates the use of exact and numerically stable approaches to compute the expectation. We find that the kinetic relevance of the set of highest-probability paths depends strongly on the metastability of the Markov chain, and so the properties of the dominant first-passage paths may be unrepresentative of the global dynamics. Use of a global measure for edge costs in the REA, based on net productive fluxes, allows the total reactive flux to be decomposed into a finite set of contributions from simple flux paths. By considering transition flux paths, a detailed quantitative analysis of the relative importance of competing dynamical processes is possible even in the metastable regime.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
5
|
Swinburne TD, Kannan D, Sharpe DJ, Wales DJ. Rare events and first passage time statistics from the energy landscape. J Chem Phys 2020; 153:134115. [PMID: 33032418 DOI: 10.1063/5.0016244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We analyze the probability distribution of rare first passage times corresponding to transitions between product and reactant states in a kinetic transition network. The mean first passage times and the corresponding rate constants are analyzed in detail for two model landscapes and the double funnel landscape corresponding to an atomic cluster. Evaluation schemes based on eigendecomposition and kinetic path sampling, which both allow access to the first passage time distribution, are benchmarked against mean first passage times calculated using graph transformation. Numerical precision issues severely limit the useful temperature range for eigendecomposition, but kinetic path sampling is capable of extending the first passage time analysis to lower temperatures, where the kinetics of interest constitute rare events. We then investigate the influence of free energy based state regrouping schemes for the underlying network. Alternative formulations of the effective transition rates for a given regrouping are compared in detail to determine their numerical stability and capability to reproduce the true kinetics, including recent coarse-graining approaches that preserve occupancy cross correlation functions. We find that appropriate regrouping of states under the simplest local equilibrium approximation can provide reduced transition networks with useful accuracy at somewhat lower temperatures. Finally, a method is provided to systematically interpolate between the local equilibrium approximation and exact intergroup dynamics. Spectral analysis is applied to each grouping of states, employing a moment-based mode selection criterion to produce a reduced state space, which does not require any spectral gap to exist, but reduces to gap-based coarse graining as a special case. Implementations of the developed methods are freely available online.
Collapse
Affiliation(s)
- Thomas D Swinburne
- Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France
| | - Deepti Kannan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
6
|
Cano AV, Payne JL. Mutation bias interacts with composition bias to influence adaptive evolution. PLoS Comput Biol 2020; 16:e1008296. [PMID: 32986712 PMCID: PMC7571706 DOI: 10.1371/journal.pcbi.1008296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/19/2020] [Accepted: 08/30/2020] [Indexed: 11/19/2022] Open
Abstract
Mutation is a biased stochastic process, with some types of mutations occurring more frequently than others. Previous work has used synthetic genotype-phenotype landscapes to study how such mutation bias affects adaptive evolution. Here, we consider 746 empirical genotype-phenotype landscapes, each of which describes the binding affinity of target DNA sequences to a transcription factor, to study the influence of mutation bias on adaptive evolution of increased binding affinity. By using empirical genotype-phenotype landscapes, we need to make only few assumptions about landscape topography and about the DNA sequences that each landscape contains. The latter is particularly important because the set of sequences that a landscape contains determines the types of mutations that can occur along a mutational path to an adaptive peak. That is, landscapes can exhibit a composition bias—a statistical enrichment of a particular type of mutation relative to a null expectation, throughout an entire landscape or along particular mutational paths—that is independent of any bias in the mutation process. Our results reveal the way in which composition bias interacts with biases in the mutation process under different population genetic conditions, and how such interaction impacts fundamental properties of adaptive evolution, such as its predictability, as well as the evolution of genetic diversity and mutational robustness. Mutation is often depicted as a random process due its unpredictable nature. However, such randomness does not imply uniformly distributed outcomes, because some DNA sequence changes happen more frequently than others. Mutation bias can be an orienting factor in adaptive evolution, influencing the mutational trajectories populations follow toward higher-fitness genotypes. Because these trajectories are typically just a small subset of all possible mutational trajectories, they can exhibit composition bias—an enrichment of a particular kind of DNA sequence change, such as transition or transversion mutations. Here, we use empirical data from eukaryotic transcriptional regulation to study how mutation bias and composition bias interact to influence adaptive evolution.
Collapse
Affiliation(s)
- Alejandro V. Cano
- Institute of Integrative Biology, ETH, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joshua L. Payne
- Institute of Integrative Biology, ETH, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Sharpe DJ, Wales DJ. Efficient and exact sampling of transition path ensembles on Markovian networks. J Chem Phys 2020; 153:024121. [DOI: 10.1063/5.0012128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Daniel J. Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Arts M, Smal I, Paul MW, Wyman C, Meijering E. Particle Mobility Analysis Using Deep Learning and the Moment Scaling Spectrum. Sci Rep 2019; 9:17160. [PMID: 31748591 PMCID: PMC6868130 DOI: 10.1038/s41598-019-53663-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/04/2019] [Indexed: 12/29/2022] Open
Abstract
Quantitative analysis of dynamic processes in living cells using time-lapse microscopy requires not only accurate tracking of every particle in the images, but also reliable extraction of biologically relevant parameters from the resulting trajectories. Whereas many methods exist to perform the tracking task, there is still a lack of robust solutions for subsequent parameter extraction and analysis. Here a novel method is presented to address this need. It uses for the first time a deep learning approach to segment single particle trajectories into consistent tracklets (trajectory segments that exhibit one type of motion) and then performs moment scaling spectrum analysis of the tracklets to estimate the number of mobility classes and their associated parameters, providing rich fundamental knowledge about the behavior of the particles under study. Experiments on in-house datasets as well as publicly available particle tracking data for a wide range of proteins with different dynamic behavior demonstrate the broad applicability of the method.
Collapse
Affiliation(s)
- Marloes Arts
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.
| | - Ihor Smal
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, The Netherlands
| | - Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik Meijering
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- School of Computer Science and Engineering, University of New South Wales, Sydney, Australia.
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.
| |
Collapse
|