1
|
Xu X, Chen J, Liu S, Zhang DH. Differential Cross-Sections for the Vibrationally Excited H + HOD( vOH = 1-4) → H 2 + OD Reactions. J Phys Chem A 2024; 128:10395-10403. [PMID: 39565966 DOI: 10.1021/acs.jpca.4c06429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Using the time-dependent wave-packet approach, we calculate the first fully converged state-to-state differential cross-sections for the H + HOD(vOH = 1-4) → H2 + OD reactions on a highly accurate neural network PES. It is found that, unlike the loss of memory effect observed in the product distributions for low vibrational excitation reactions, high initial OH vibrational excitation significantly influences not only the product vibrational distribution but also the angular distribution. Furthermore, for the H + HOD(vOH = 3,4) reactions, the total integral cross-sections maintain the pronounced oscillatory structures in the J = 0 probabilities at low collision energies, which originate from the prereactive van der Waals resonances. Notably, the product angular distributions exhibit forward-backward peaked behavior at these energies, akin to those observed in the complex-forming system with deep potential wells. This is attributed to the much longer lifetimes of these resonances compared to those of conventional transition state resonances.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhang J, Buren B, Li Y. Study on Quantum Dynamics of the Na + Na 2 Exchanged Reaction and Lifetime Prediction of Na 3 Complex Based on the Neural Network Potential Energy Surface. J Phys Chem A 2024; 128:9634-9644. [PMID: 39441117 DOI: 10.1021/acs.jpca.4c05712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A high-precision global potential energy surface (PES) is constructed for the Na3 system based on high-level ab initio calculations and the fundamental invariant neural network (FI-NN) method. The root-mean-square error (RMSE) of the PES is 2.88 cm-1. The state-resolved quantum dynamics of the ground-state Na + Na2 (v = 0, j = 0) → Na2 (v', j') + Na reaction is studied using the time-dependent wave packet (TDWP) method on the new PES. Analysis of the relevant integral cross sections revealed a complicated energy-transfer mechanism during collisions. Similarly, the characteristics of the differential cross sections indicate that the complex-forming mechanism plays a dominant role in the reaction, providing conditions for a comprehensive exploration of the lifetimes of the complexes. Based on the Rice-Ramsperger-Kassel-Marcus (RRKM) theory, the calculated lifetime of the Na3 complex is approximately 3.9 ns.
Collapse
Affiliation(s)
- Jiapeng Zhang
- Department of Physics, Liaoning University, Shenyang 110036, China
| | - Bayaer Buren
- School of Science, Shenyang University of Technology, Shenyang 110870, China
| | - Yongqing Li
- Department of Physics, Liaoning University, Shenyang 110036, China
| |
Collapse
|
3
|
Wang R, Zhao H, Sun Z. Reactant-Product Decoupling Technique Using the Intermediate Coordinate Method. J Phys Chem A 2024; 128:3726-3741. [PMID: 38666315 DOI: 10.1021/acs.jpca.4c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Although the reactant-product decoupling (RPD) technique was proposed over two decades ago, it remains an efficient approach for calculating product state-resolved information on some simple direct reactions using the quantum wave packet method. In the past, usually the RPD technique employed the collocation method to transform the wave function between reactant and product arrangements, which requires quite large computational efforts. In this work, the intermediate coordinate (IC) method is employed to realize the RPD technique. Numerical examples demonstrate that this new IC RPD (IRPD) technique has superior computational efficiency compared with the original method employing the collocation method. Especially, the new IRPD technique significantly saves disk space and computer memory. To illustrate the features of our new method, the total reaction probabilities of the H + H2, H + Br2, and F + H2 reactions with J = 0 and the differential cross sections of the H + H2 and F + H2 reactions at a series of collision energy are calculated and presented. With this efficient and effective new RPD technique, the Li + HF reaction, which involves sharp resonances with long-range wave functions in the van der Waals wells in both the reactant and product arrangements, is also calculated with several J at the product state-resolved level to reveal the ability of the RPD technique for describing resonance wave functions. With these numerical examples, it is found that, for the reaction with resonances, the RPD approach should be applied carefully. Otherwise, it is very possible that the resonances could disappear with the application of the RPD technique.
Collapse
Affiliation(s)
- Ransheng Wang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Zhao H, Sun Z. Theoretical Development of the Interaction-Asymptotic Region Decomposition Method for Tetratomic Reactive Scattering. J Chem Theory Comput 2024; 20:1802-1810. [PMID: 38262035 DOI: 10.1021/acs.jctc.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
An accurate and efficient time-dependent wave packet method is proposed for solving the product state-resolved reaction probabilities of the tetratomic reactive system. In this method, the entire scattering process is divided into the interaction region and multiple asymptotic regions, sharing the same spirit as the interaction-asymptotic region decomposition (IARD) approach in a triatomic reactive scattering process. The hyperspherical coordinate is adopted in the interaction region, while the corresponding Jacobi coordinate is employed in each asymptotic region. Therefore, in this IARD method, the "coordinate problem", the difficulty of expressing the wave function in the entire region using a single coordinate system, can be effectively avoided, and only a very small number of the grid points (or the basis functions) are required. For the numerical illustration, the typical tetratomic reaction H2 + OH with zero total angular momentum is calculated, and compared with other quantum wave packet methods. Our proposed IARD method for the tetratomic reactive system is much more efficient and accurate.
Collapse
Affiliation(s)
- Hailin Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P.R. China 116023
| | - Zhigang Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P.R. China 116023
| |
Collapse
|
5
|
Zhu Z, Feng Y, Li W. The state-to-state dynamics of the N + NH( 3Σ −) → N 2(X 1 Σ g+) + H reaction: based on a new global potential energy surface. Mol Phys 2023. [DOI: 10.1080/00268976.2022.2162455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ziliang Zhu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, People’s Republic of China
- Key Laboratory for Structure and Environment Disaster Preventing of Agriculture Greenhouse, Weifang University of Science and Technology, Shouguang, People’s Republic of China
- College of General Education, Weifang University of Science and Technology, Shouguang, People’s Republic of China
| | - Yinghua Feng
- College of General Education, Weifang University of Science and Technology, Shouguang, People’s Republic of China
| | - Wentao Li
- College of General Education, Weifang University of Science and Technology, Shouguang, People’s Republic of China
| |
Collapse
|
6
|
State-to-state dynamical studies of the C+ + H2(v = 0, j = 0) → CH+ + H reaction using time-dependent wave packet method. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zhang Y, Xu J, Yang H, Xu J. The global potential energy surface of the RbH2 system and dynamics studies of the H + RbH → Rb + H2 reaction. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Zhang Y, Xu J, Yang H, Xu J. Nonadiabatic dynamics studies of the H( 2S) + RbH(X 1Σ +) reaction: based on new diabatic potential energy surfaces. RSC Adv 2022; 12:19751-19762. [PMID: 35865202 DOI: 10.1039/d2ra03028d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
The global diabatic potential energy surfaces (PESs) that correspond to the ground (12A') and first excited states (22A') of the RbH2 system PES are constructed based on 17 786 ab initio points. The neural network method is used to fit the PESs and the topographic features of the new diabatic PESs are discussed in detail. Based on the newly constructed diabatic PESs, the dynamics calculations of the H(2S) + RbH(X1Σ+) → Rb(52S) + H2(X1Σg +)/Rb(52P) + H2(X1Σg +) reactions are performed using the time-dependent wave packet method. The dynamics properties of these two channels such as the reaction probabilities, integral cross sections, and differential cross sections (DCSs) are calculated at state-to-state level of theory. The nonadiabatic effects are discussed in detail, and the results indicate that the adiabatic results are overestimated from the dynamics values. The DCSs of these two channels are forward biased, which indicates that the abstraction mechanism plays a dominant role in the reaction.
Collapse
Affiliation(s)
- Yong Zhang
- NEST Lab, Department of Chemistry, Department of Physics, College of Science, Shanghai University Shanghai 200444 China .,Department of Physics, Tonghua Normal University Tonghua Jilin 134002 China
| | - Jinghua Xu
- Department of Physics, Tonghua Normal University Tonghua Jilin 134002 China
| | - Haigang Yang
- Department of Physics, Tonghua Normal University Tonghua Jilin 134002 China
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, Department of Physics, College of Science, Shanghai University Shanghai 200444 China
| |
Collapse
|
9
|
Mao Y, Buren B, Yang Z, Chen M. Time-dependent wave packet dynamics study of the resonances in the H + LiH +( v = 0, j = 0) → Li + + H 2 reaction at low collision energies. Phys Chem Chem Phys 2022; 24:15532-15539. [PMID: 35713276 DOI: 10.1039/d1cp05601h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The depletion process of LiH+ by H collision plays an important role in the evolution of the early universe and astrophysical processes, including the eventual charge-states, abundances of atomic and molecular species and ensuing astrochemistry. Here, a quantum dynamics study on the H + LiH+(v = 0, j = 0) → Li+ + H2 reaction is performed at the low collision energy range from 0.1 meV to 10 meV using the time-dependent wave packet method. A Feshbach resonance peak is observed near 0.8 meV collision energy on the total reaction probability curves. This resonance originates from the coupling with the v = 0, j = 1 energy level of the reactant LiH+, and it is dominated by the contributions of J = 0-4 partial waves. Another partial wave resonance is also found on the total integral cross section at 1.2 meV, which is closely connected to the opening of the J = 7 partial wave. The opening of the J = 7 partial wave generates a notable forward scattering peak, and the Feshbach resonance can promote both the forward and backward scatterings. Moreover, the total and product vibrational state-resolved rate coefficients for the temperature range of 1-100 K are also reported.
Collapse
Affiliation(s)
- Ye Mao
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Bayaer Buren
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Zijiang Yang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
10
|
Naskar K, Ghosh S, Adhikari S. Accurate Calculation of Rate Constant and Isotope Effect for the F + H 2 Reaction by the Coupled 3D Time-Dependent Wave Packet Method on the Newly Constructed Ab Initio Ground Potential Energy Surface. J Phys Chem A 2022; 126:3311-3328. [PMID: 35594416 DOI: 10.1021/acs.jpca.2c01209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ coupled three-dimensional (3D) time dependent wave packet formalism in hyperspherical coordinates for reactive scattering problem on the newly constructed ab initio calculated ground adiabatic potential energy surface for the F + H2/D2 reaction. The convergence profiles for various reactive channels are depicted at low collision energy regimes with respect to the total angular momentum (J) quantum numbers. For two different reactant diatomic molecules (H2 and D2) initially at their respective ground roto-vibrational state (v = 0, j = 0), calculated state-to-state as well as total integral cross sections as a function of collision energy, temperature dependent rate constants, and the kinetic isotope effect for various reactivity profiles of F + H2 and F + D2 reactions are presented along with previous theoretical and experimental results.
Collapse
Affiliation(s)
- Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata West Bengal-741246, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| |
Collapse
|
11
|
|
12
|
Moberg DR, Jasper AW. Permutationally Invariant Polynomial Expansions with Unrestricted Complexity. J Chem Theory Comput 2021; 17:5440-5455. [PMID: 34469127 DOI: 10.1021/acs.jctc.1c00352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general strategy is presented for constructing and validating permutationally invariant polynomial (PIP) expansions for chemical systems of any stoichiometry. Demonstrations are made for three categories of gas-phase dynamics and kinetics: collisional energy-transfer trajectories for predicting pressure-dependent kinetics, three-body collisions for describing transient van der Waals adducts relevant to atmospheric chemistry, and nonthermal reactivity via quasiclassical trajectories. In total, 30 systems are considered with up to 15 atoms and 39 degrees of freedom. Permutational invariance is enforced in PIP expansions with as many as 13 million terms and 13 permutationally distinct atom types by taking advantage of petascale computational resources. The quality of the PIP expansions is demonstrated through the systematic convergence of in-sample and out-of-sample errors with respect to both the number of training data and the order of the expansion, and these errors are shown to predict errors in the dynamics for both reactive and nonreactive applications. The parallelized code distributed as part of this work enables the automation of PIP generation for complex systems with multiple channels and flexible user-defined symmetry constraints and for automatically removing unphysical unconnected terms from the basis set expansions, all of which are required for simulating complex reactive systems.
Collapse
Affiliation(s)
- Daniel R Moberg
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
13
|
A new global potential energy surface of X2A′ state of Li2H system and quantum dynamics calculation of the H + Li2 → Li + LiH reaction. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Zhu Z, Zhang A, He D, Li W. A new global potential energy surface of the SH 2+(X 4A'') system and quantum calculations for the S + + H 2( v = 0-3, j = 0) reaction. Phys Chem Chem Phys 2021; 23:4757-4767. [PMID: 33599223 DOI: 10.1039/d0cp06335e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new global potential energy surface (PES) for the ground state of the SH2+(X4A'') system is constructed using a permutation invariant polynomial neural network method. In ab initio calculations, the MRCI-F12 method with the AVTZ basis set is used. Furthermore, the dynamics calculations of the S+ + H2(v = 0-3, j = 0) → SH+ + H reaction are carried out based on the new PES. The reaction probabilities and integral cross sections are compared with available theoretical calculations. Present values are in general good agreement with the previous theoretical studies. However, some discrepancies can still be found due to different PESs used in the calculation. Furthermore, the vibrational energy of the reactant molecule can significantly enhance the reactivity compared to the translational energy. The differential cross sections indicated that the reaction mechanism is changed from the "head-on" rebound mechanism to the tripping mechanism with the increasing number of initial vibrational excitation state.
Collapse
Affiliation(s)
- Ziliang Zhu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization and Key Laboratory for Structure and Environment Disaster Preventing of Agriculture Greenhouse, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.
| | - Aijie Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China
| | - Di He
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Wentao Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization and Key Laboratory for Structure and Environment Disaster Preventing of Agriculture Greenhouse, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.
| |
Collapse
|
15
|
Zhao H, Xie D, Sun Z. Interaction-Asymptotic Region Decomposition Method for an Insertion Reaction: Application to the S( 1D) + H 2 Reaction. J Phys Chem A 2021; 125:2007-2018. [PMID: 33625216 DOI: 10.1021/acs.jpca.1c00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With adjusting principal axes hyperspherical (APH) coordinate in the interaction region, and the Jacobi coordinates in the asymptotic regions, an efficient multidomain interaction-asymptotic region decomposition (IARD) method has been developed to solve the "coordinate problem" in a product-state-resolved reactive scattering calculation using the quantum wave packet method. Although the APH coordinate treats with all three channels equally, and is efficient for describing the interaction region for some direct reactions, it is inefficient for describing the insertion-type reaction due to the singularity problem, such as the S(1D) + H2 reaction. To deal with this issue, in this work, the channel-dependent Delves hyperspherical (DH) coordinate is proposed to describe the interaction region using the IARD method. The proposed DH-IARD method was applied to calculate the product-state-resolved reaction probabilities of the H + HD reaction, and the differential and integral cross sections of the typical insertion reaction S(1D) + H2. It is found that the new DH-IARD method is much more efficient than the previous APH-IARD method for dealing with insertion reactions. The partial wave resonance structures were observed in the integral cross section. It is found that at a low collision energy, the position of the initial wave packet has to be put far away. Otherwise, the partial wave resonance structures could not be correctly reproduced due to the reef well arising with a large total angular momentum J.
Collapse
Affiliation(s)
- Hailin Zhao
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
16
|
Ghosh S, Sahoo T, Baer M, Adhikari S. Charge Transfer Processes for H + H 2+ Reaction Employing Coupled 3D Wavepacket Approach on Beyond Born-Oppenheimer Based Ab Initio Constructed Diabatic Potential Energy Surfaces. J Phys Chem A 2021; 125:731-745. [PMID: 33461293 DOI: 10.1021/acs.jpca.0c08975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamics of the H + H2+ reaction has been analyzed from the electronically first excited state of diabatic potential energy surfaces constructed by employing the Beyond Born-Oppenheimer theory [J. Chem. Phys. 2014, 141, 204306]. We have employed the coupled 3D time-dependent wavepacket formalism in hyperspherical coordinates for multisurface reactive scattering problems. To be specific, the charge transfer processes have been investigated extensively by calculating state-to-state as well as total reaction probabilities and integral cross sections, when the reaction process is initiated from the first excited electronic state (21A'). We have depicted the convergence profiles of reaction probabilities for the competing charge transfer processes, namely, reactive charge transfer (RCT) and nonreactive charge transfer (NRCT) processes for different total energies with respect to total angular momentum, J. Total and state-to-state integral cross sections are calculated as a function of total energy for the initial rovibrational state, namely, v = 0, j = 0 level of H2+ (2Σg+) molecule and are compared with previous theoretical calculations. Finally, we have calculated temperature-dependent rate constants using our presently evaluated cross sections and compared their average with the experimentally measured one.
Collapse
Affiliation(s)
- Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700 032, India
| | - Tapas Sahoo
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Michael Baer
- The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700 032, India
| |
Collapse
|
17
|
Song J, Zhu Z. Dynamics studies of the Li(2S) + H2(X1Σg+) → LiH (X1Σ+) + H(2S) reaction by time-dependent wave packet and quasi-classical trajectory methods. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Zhu Z, Li L, Li Q, Teng B. Dynamics studies of O + + D 2reaction using the time-dependent wave packet method. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1619855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ziliang Zhu
- College of Physics, Qing dao University, Qing dao, People’s Republic of China
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, People’s Republic of China
| | - Li Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, People’s Republic of China
| | - Qiju Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, People’s Republic of China
| | - Bing Teng
- College of Physics, Qing dao University, Qing dao, People’s Republic of China
| |
Collapse
|
19
|
Zheng X, Zhu Z. Isotopic effects of the N(2D) + H2 → NH + H reaction: a quantum time-dependent wave packet investigation. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1724339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xingrong Zheng
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang, People’s Republic of China
| | - Ziliang Zhu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang, People’s Republic of China
| |
Collapse
|
20
|
Li W, He D, Sun Z. Dynamics studies of the H + HBr reaction: Based on a new potential energy surface. J Chem Phys 2019; 151:185102. [PMID: 31731875 DOI: 10.1063/1.5124834] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The initial state specific quantum wave packet dynamics studies of the H + HBr (v0 = 0, j0 = 0-2) reaction were performed using a new global potential energy surface (PES) of the ground state of the BrH2 system for the collision energy ranging from 0.01 to 2.0 eV. The PES was constructed using the permutation invariant polynomial neural network method based on approximately 63 000 ab initio points, which were calculated by the multireference configuration interaction method with AVTZ and AVQZ basis sets. To improve the accuracy of the PES, Davidson's correction and spin-orbit coupling effects were considered in the ab initio calculation and the basis set was extrapolated to complete basis set limit. The new PES was compared with the previous ones and also the available experimental data, which suggests that the new PES is more accurate. The state-to-state quantum wave packet dynamics was carried out using the reactant-coordinate based approach. The reaction probabilities, integral and differential cross sections, rovibrational state distributions of product and rate constants, etc., were compared with the available theoretical and experimental studies. In general, the present work is in better agreement with the available experimental data. The quantum dynamics studies suggest that the rotational excitation of HBr has little effect on the reaction.
Collapse
Affiliation(s)
- Wentao Li
- Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Di He
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Zhigang Sun
- Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
21
|
Zhao H, Umer U, Hu X, Xie D, Sun Z. An interaction-asymptotic region decomposition method for general state-to-state reactive scatterings. J Chem Phys 2019; 150:134105. [DOI: 10.1063/1.5085651] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hailin Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Umair Umer
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Xixi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
22
|
Zhao H, Hu X, Xie D, Sun Z. Quantum wavepacket method for state-to-state reactive cross sections in hyperspherical coordinates. J Chem Phys 2018; 149:174103. [DOI: 10.1063/1.5042066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hailin Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xixi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
23
|
Xu J, Zhang Y, Han Y. Vibrational and rotational excitation studies of the reaction Au+ + H2 → AuH+ + H using the time-dependent wave packet approach. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Fu B, Zhang DH. Ab Initio Potential Energy Surfaces and Quantum Dynamics for Polyatomic Bimolecular Reactions. J Chem Theory Comput 2018; 14:2289-2303. [DOI: 10.1021/acs.jctc.8b00006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
25
|
Zhao B, Manthe U, Guo H. Fermi resonance controlled product branching in the H + HOD reaction. Phys Chem Chem Phys 2018; 20:17029-17037. [DOI: 10.1039/c8cp02279h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excitation of the first overtone of bending mode results in a significant enhancement in the HD + OH channel due to the 1 : 2 Fermi resonance between the fundamental OD stretch and the first overtone of the bend.
Collapse
Affiliation(s)
- Bin Zhao
- Theoretische Chemie
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Uwe Manthe
- Theoretische Chemie
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| |
Collapse
|
26
|
Li W, Yuan J, Yuan M, Zhang Y, Yao M, Sun Z. A new potential energy surface of the OH2+ system and state-to-state quantum dynamics studies of the O+ + H2 reaction. Phys Chem Chem Phys 2018; 20:1039-1050. [DOI: 10.1039/c7cp03676k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new global potential energy surface of the O+ + H2 system was constructed with neural network method, using about 63000 ab initio points, which were calculated by employing the multi-reference configuration interaction method with aug-cc-pVTZ and aug-cc-pVQZ basis sets.
Collapse
Affiliation(s)
- Wentao Li
- Department of College Foundation Education
- Bohai University
- Jinzhou 121000
- China
- Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics
| | - Jiuchuang Yuan
- Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Meiling Yuan
- Key Laboratory of Materials Modification by Beams of the Ministry of Education
- School of Physics and Optoelectronic Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Yong Zhang
- Department of Physics
- Tonghua Normal University
- Tonghua 134002
- China
| | - Minghai Yao
- Department of College Foundation Education
- Bohai University
- Jinzhou 121000
- China
| | - Zhigang Sun
- Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
27
|
Zhao B, Sun Z, Guo H. State-to-state mode specificity in H + DOH(νOH = 1) → HD + OH(ν2 = 0) reaction: vibrational non-adiabaticity or local-mode excitation? Phys Chem Chem Phys 2018; 20:191-198. [DOI: 10.1039/c7cp07199j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
State-of-the-art full dimensional state-to-state quantum dynamics reveal a startling observation in which the DOH(νOH = 1) molecule reacts with a H atom to produce a vibrationless OH product. This interesting observation is attributed to a small OD excited local-mode component in the reactant wavefunction.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| | - Zhigang Sun
- Center for Theoretical and Computational Chemistry
- and State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| |
Collapse
|
28
|
Ghosh S, Mukherjee S, Mukherjee B, Mandal S, Sharma R, Chaudhury P, Adhikari S. Beyond Born-Oppenheimer theory for ab initio constructed diabatic potential energy surfaces of singlet H3+ to study reaction dynamics using coupled 3D time-dependent wave-packet approach. J Chem Phys 2017; 147:074105. [PMID: 28830157 DOI: 10.1063/1.4998406] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sandip Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Saikat Mukherjee
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Bijit Mukherjee
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Souvik Mandal
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Rahul Sharma
- St. Xavier’s College, 30 Mother Teresa Sarani, Kolkata, West Bengal 700 016, India
| | - Pinaki Chaudhury
- Department of Chemistry, University of Calcutta, Kolkata 700 009, India
| | - Satrajit Adhikari
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| |
Collapse
|
29
|
Zhao B, Guo H. State‐to‐state quantum reactive scattering in four‐atom systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Zhao
- Department of Chemistry and Chemical Biology University of New Mexico Albuquerque NM USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology University of New Mexico Albuquerque NM USA
| |
Collapse
|
30
|
Wang S, He D, Li W, Chen M. A global potential energy surface and dynamics study of the Au + + H 2 → H + Au +H reaction. RSC Adv 2017. [DOI: 10.1039/c7ra05223e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A global potential energy surface (PES) of the ground state of the Au+H2 system was constructed using a neural network method with permutation invariant polynomials.
Collapse
Affiliation(s)
- Shufen Wang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education)
- School of Physics and Optoelectronic Technology
- Dalian University of Technology
- Dalian 116024
- PR China
| | - Di He
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education)
- School of Physics and Optoelectronic Technology
- Dalian University of Technology
- Dalian 116024
- PR China
| | - Wentao Li
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education)
- School of Physics and Optoelectronic Technology
- Dalian University of Technology
- Dalian 116024
- PR China
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education)
- School of Physics and Optoelectronic Technology
- Dalian University of Technology
- Dalian 116024
- PR China
| |
Collapse
|
31
|
Zhao B, Sun Z, Guo H. A reactant-coordinate-based approach to state-to-state differential cross sections for tetratomic reactions. J Chem Phys 2016; 145:184106. [DOI: 10.1063/1.4966966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bin Zhao
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
32
|
Zhao B, Sun Z, Guo H. State-to-state differential cross sections for D2 + OH → D + DOH reaction: Influence of vibrational excitation of OH reactant. J Chem Phys 2016; 145:134308. [DOI: 10.1063/1.4964322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bin Zhao
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics, and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
33
|
Xie C, Jiang B, Yang M, Guo H. State-to-State Mode Specificity in F + CHD3 → HF/DF + CD3/CHD2 Reaction. J Phys Chem A 2016; 120:6521-8. [DOI: 10.1021/acs.jpca.6b06450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Changjian Xie
- Department of Chemistry
and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Bin Jiang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in
Biological Systems, Wuhan Center for Magnetic Resonance, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hua Guo
- Department of Chemistry
and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
34
|
Zhao B, Sun Z, Guo H. State-to-state mode selectivity in the HD + OH reaction: Perspectives from two product channels. J Chem Phys 2016; 144:214303. [DOI: 10.1063/1.4952764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bin Zhao
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Zhigang Sun
- Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|