Liu Y, Solari E, Scopelliti R, Fadaei Tirani F, Severin K. Lewis Acid-Mediated One-Electron Reduction of Nitrous Oxide.
Chemistry 2018;
24:18809-18815. [PMID:
30426605 DOI:
10.1002/chem.201804709]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 11/10/2022]
Abstract
The one-electron reduction of nitrous oxide (N2 O) was achieved using strong Lewis acids E(C6 F5 )3 (E=B or Al) in combination with metallocenes. In the case of B(C6 F5 )3 , electron transfer to N2 O required a powerful reducing agent such as Cp*2 Co (Cp*=pentamethylcyclopentadienyl). In the presence of Al(C6 F5 )3 , on the other hand, the reactions could be performed with weaker reducing agents such as Cp*2 Fe or Cp2 Fe (Cp=cyclopentadienyl). The Lewis acid-mediated electron transfer from the metallocene to N2 O resulted in cleavage of the N-O bond, generating N2 and the oxyl radical anion [OE(C6 F5 )3 ]⋅- . The latter is highly reactive and engages in C-H activation reactions. It was possible to trap the radical by addition of the Gomberg dimer, which acts as a source of the trityl radical.
Collapse