1
|
Diezemann G. Nonlinear response theory for Markov processes. IV. The asymmetric double-well potential model revisited. Phys Rev E 2022; 106:064122. [PMID: 36671146 DOI: 10.1103/physreve.106.064122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The dielectric response of noninteracting dipoles is discussed in the framework of the classical model of stochastic reorientations in an asymmetric double-well potential (ADWP). In the nonlinear regime, this model exhibits some pecularities in the static response. We find that the saturation behavior of the symmetric double-well potential model does not follow the Langevin function and only in the linear regime are the standard results recovered. If a finite asymmetry is assumed, then the nonlinear susceptibilities are found to change the sign at a number of characteristic temperatures that depend on the magnitude of the asymmetry, as has been observed earlier for the third-order and fifth-order responses. If the kinetics of the barrier crossing in the ADWP model is described as a two-state model, then we can give analytical expressions for the values of the characteristic temperatures. The results for the response obtained from a (numerical) solution of the Fokker-Planck equation for the Brownian motion in a model ADWP behaves very similarly to the two-state model for high barriers. For small barriers no clear-cut timescale separation between the barrier crossing process and the intrawell relaxation exists and the model exhibits a number of timescales. In this case, the frequency-dependent linear susceptibility at low temperatures is dominated by the fast intrawell transitions and at higher temperatures by the barrier crossing kinetics. We find that for nonlinear susceptibilities the latter process appears to be more important and the intrawell transitions play only a role at the lowest temperatures.
Collapse
Affiliation(s)
- Gregor Diezemann
- Department Chemie, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
| |
Collapse
|
2
|
Zhang P, Gandolfi M, Banfi F, Glorieux C, Liu L. Time-resolved thermal lens investigation of glassy dynamics in supercooled liquids: Theory and experiments. J Chem Phys 2021; 155:074503. [PMID: 34418939 DOI: 10.1063/5.0060310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This work reports results on the simultaneous spectroscopy of the specific heat and thermal expansivity of glycerol by making use of a wideband time-resolved thermal lens (TL) technique. An analytical model is presented which describes TL transients in a relaxing system subjected to impulsive laser heating. Experimentally, a set of TL waveforms, from 1 ns to 20 ms, has been recorded for a glycerol sample upon supercooling, from 300 to 200 K. The satisfactory fitting of the TL signals to the model allows the assessment of relaxation strength and relaxation frequency of the two quantities up to sub-100 MHz, extending the specific heat and thermal expansion spectroscopy by nearly three and eight decades, respectively. Fragility values, extracted from the relaxation behavior of the specific heat and the thermal expansion coefficient, are found to be similar, despite a substantial difference in relaxation strength.
Collapse
Affiliation(s)
- Pengfei Zhang
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Belgium
| | - Marco Gandolfi
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Belgium
| | - Francesco Banfi
- FemtoNanoOptics Group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Christ Glorieux
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Belgium
| | - Liwang Liu
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Belgium
| |
Collapse
|
3
|
Speck T. Modeling non-linear dielectric susceptibilities of supercooled molecular liquids. J Chem Phys 2021; 155:014506. [PMID: 34241396 DOI: 10.1063/5.0056657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Advances in high-precision dielectric spectroscopy have enabled access to non-linear susceptibilities of polar molecular liquids. The observed non-monotonic behavior has been claimed to provide strong support for theories of dynamic arrest based on the thermodynamic amorphous order. Here, we approach this question from the perspective of dynamic facilitation, an alternative view focusing on emergent kinetic constraints underlying the dynamic arrest of a liquid approaching its glass transition. We derive explicit expressions for the frequency-dependent higher-order dielectric susceptibilities exhibiting a non-monotonic shape, the height of which increases as temperature is lowered. We demonstrate excellent agreement with the experimental data for glycerol, challenging the idea that non-linear response functions reveal correlated relaxation in supercooled liquids.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
4
|
Arrese-Igor S, Alegría A, Colmenero J. Signature of hydrogen bonding association in the dielectric signal of polyalcohols. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Richert R. Perspective: Nonlinear approaches to structure and dynamics of soft materials. J Chem Phys 2018; 149:240901. [DOI: 10.1063/1.5065412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA and I. Physikalisches Institut, Universität Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
6
|
Niss K, Hecksher T. Perspective: Searching for simplicity rather than universality in glass-forming liquids. J Chem Phys 2018; 149:230901. [PMID: 30579292 DOI: 10.1063/1.5048093] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This article gives an overview of experimental results on dynamics in bulk glass-forming molecular liquids. Rather than looking for phenomenology that is universal, in the sense that it is seen in all liquids, the focus is on identifying the basic characteristics, or "stylized facts," of the glass transition problem, i.e., the central observations that a theory of the physics of glass formation should aim to explain in a unified manner.
Collapse
Affiliation(s)
- Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
7
|
Gadige P, Albert S, Michl M, Bauer T, Lunkenheimer P, Loidl A, Tourbot R, Wiertel-Gasquet C, Biroli G, Bouchaud JP, Ladieu F. Unifying different interpretations of the nonlinear response in glass-forming liquids. Phys Rev E 2018; 96:032611. [PMID: 29346923 DOI: 10.1103/physreve.96.032611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Indexed: 11/07/2022]
Abstract
This work aims at reconsidering several interpretations coexisting in the recent literature concerning nonlinear susceptibilities in supercooled liquids. We present experimental results on glycerol and propylene carbonate, showing that the three independent cubic susceptibilities have very similar frequency and temperature dependences, for both their amplitudes and phases. This strongly suggests a unique physical mechanism responsible for the growth of these nonlinear susceptibilities. We show that the framework proposed by two of us [J.-P. Bouchaud and G. Biroli, Phys. Rev. B 72, 064204 (2005)PRBMDO1098-012110.1103/PhysRevB.72.064204], where the growth of nonlinear susceptibilities is intimately related to the growth of glassy domains, accounts for all the salient experimental features. We then review several complementary and/or alternative models and show that the notion of cooperatively rearranging glassy domains is a key (implicit or explicit) ingredient to all of them. This paves the way for future experiments, which should deepen our understanding of glasses.
Collapse
Affiliation(s)
- P Gadige
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| | - S Albert
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| | - M Michl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Th Bauer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - P Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - A Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - R Tourbot
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| | - C Wiertel-Gasquet
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| | - G Biroli
- IPhT, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 774, 91191 Gif-sur-Yvette Cedex, France.,LPS, Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France
| | - J-P Bouchaud
- Capital Fund Management, 23 Rue de l'Université, 75007 Paris, France
| | - F Ladieu
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
8
|
Young-Gonzales AR, Adrjanowicz K, Paluch M, Richert R. Nonlinear dielectric features of highly polar glass formers: Derivatives of propylene carbonate. J Chem Phys 2017; 147:224501. [DOI: 10.1063/1.5003813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- A. R. Young-Gonzales
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - K. Adrjanowicz
- Institute of Physics, University of Silesia, Ulica Uniwersytecka 4, 40-007 Katowice, Poland
- SMCEBI, Ulica 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - M. Paluch
- Institute of Physics, University of Silesia, Ulica Uniwersytecka 4, 40-007 Katowice, Poland
- SMCEBI, Ulica 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - R. Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
9
|
Richert R. Nonlinear dielectric effects in liquids: a guided tour. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:363001. [PMID: 28665294 DOI: 10.1088/1361-648x/aa7cc4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dielectric relaxation measurements probe how the polarization of a material responds to the application of an external electric field, providing information on structure and dynamics of the sample. In the limit of small fields and thus linear response, such experiments reveal the properties of the material in the same thermodynamic state it would have in the absence of the external field. At sufficiently high fields, reversible changes in enthalpy and entropy of the system occur even at constant temperature, and these will in turn alter the polarization responses. The resulting nonlinear dielectric effects feature field induced suppressions (saturation) and enhancements (chemical effect) of the amplitudes, as well as time constant shifts towards faster (energy absorption) and slower (entropy reduction) dynamics. This review focuses on the effects of high electric fields that are reversible and observed at constant temperature for single component glass-forming liquids. The experimental challenges involved in nonlinear dielectric experiments, the approaches to separating and identifying the different sources of nonlinear behavior, and the current understanding of how high electric fields affect dielectric materials will be discussed. Covering studies from Debye's initial approach to the present state-of-the-art, it will be emphasized what insight can be gained from the nonlinear responses that are not available from dielectric relaxation results obtained in the linear regime.
Collapse
Affiliation(s)
- Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, United States of America
| |
Collapse
|
10
|
Diezemann G. Nonlinear response theory for Markov processes. II. Fifth-order response functions. Phys Rev E 2017; 96:022150. [PMID: 28950644 DOI: 10.1103/physreve.96.022150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 06/07/2023]
Abstract
The nonlinear response of stochastic models obeying a master equation is calculated up to fifth order in the external field, thus extending the third-order results obtained earlier [G. Diezemann, Phys. Rev. E 85, 051502 (2012)PLEEE81539-375510.1103/PhysRevE.85.051502]. For sinusoidal fields the 5ω component of the susceptibility is computed for the model of dipole reorientations in an asymmetric double well potential and for a trap model with a Gaussian density of states. For most realizations of the models a hump is found in the higher-order susceptibilities. In particular, for the asymmetric double well potential model there are two characteristic temperature regimes showing the occurrence of such a hump as compared to a single characteristic regime in the case of the third-order response. In the case of the trap model the results strongly depend on the variable coupled to the field. As for the third-order response, the low-frequency limit of the susceptibility plays a crucial role with respect to the occurrence of a hump. The findings are discussed in light of recent experimental results obtained for supercooled liquids. The differences found for the third-order and the fifth-order response indicate that nonlinear response functions might serve as a powerful tool to discriminate among the large number of existing models for glassy relaxation.
Collapse
Affiliation(s)
- Gregor Diezemann
- Institut für Physikalische Chemie, Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
11
|
Patro LN, Burghaus O, Roling B. Nonlinear permittivity spectra of supercooled ionic liquids: Observation of a "hump" in the third-order permittivity spectra and comparison to double-well potential models. J Chem Phys 2017; 146:154503. [PMID: 28433008 DOI: 10.1063/1.4979600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have measured the third-order permittivity spectra ε33 of a monocationic and of a dicationic liquid close to the glass transition temperature by applying ac electric fields with large amplitudes up to 180 kV/cm. A peak ("hump") in the modulus of ε33 is observed for a mono-cationic liquid after subtraction of the dc contribution from the imaginary part of ε33. We show that the origin of this experimental "hump" is a peak in the imaginary part of ε33, with the peak height strongly increasing with decreasing temperature. Overall, the spectral shape of the third-order permittivity of both ionic liquids is similar to the predictions of a symmetric double well potential model, although this model does not predict a "hump" in the modulus. In contrast, an asymmetric double well potential model predicts a "hump," but the spectral shape of both the real and imaginary part of ε33 deviates significantly from the experimental spectra. These results show that not only the modulus of ε33 but also its phase is an important quantity when comparing experimental results with theoretical predictions.
Collapse
Affiliation(s)
- L N Patro
- Department of Chemistry, Philipps University of Marburg, Marburg 35032, Germany
| | - O Burghaus
- Department of Chemistry, Philipps University of Marburg, Marburg 35032, Germany
| | - B Roling
- Department of Chemistry, Philipps University of Marburg, Marburg 35032, Germany
| |
Collapse
|
12
|
Johari GP. Effects of electric field on thermodynamics and ordering of a dipolar liquid. J Chem Phys 2016; 145:164502. [DOI: 10.1063/1.4964863] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
13
|
Kim P, Young-Gonzales AR, Richert R. Dynamics of glass-forming liquids. XX. Third harmonic experiments of non-linear dielectric effects versus a phenomenological model. J Chem Phys 2016. [DOI: 10.1063/1.4960620] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|