1
|
Lau THM, Foord JS, Tsang SCE. 2D molybdenum disulphide nanosheets incorporated with single heteroatoms for the electrochemical hydrogen evolution reaction. NANOSCALE 2020; 12:10447-10455. [PMID: 32379259 DOI: 10.1039/d0nr01295e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
2D nanosheets give enhanced surface area to volume ratios in particle morphology and they can also provide defined surface sites to disperse foreign atoms. Placing atoms of catalytic interest on 2D nanosheets as Single Atom Catalysts (SAC) represents one of the novel approaches due to their unique but tunable electronic and steric characteristics. Here in this mini-review, we particularly highlight some recent and important developments on heteroatom doped MoS2 nanosheets (SAC-MoS2) as catalysts for the electrochemical hydrogen evolution reaction (HER) from water, which could lead to opening up to a flagship of important renewable technologies in future. It is shown that the nature of dopants, doping positions and the polytypes of MoS2 nanosheets are the determining factors in the overall catalytic abilities of these functionalised nanosheets. This may serve to obtain atomic models which lead to further understanding of the 'metal-support interaction' in catalysis.
Collapse
Affiliation(s)
- Thomas H M Lau
- Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | | | | |
Collapse
|
2
|
Ammar M, Al-Ghoul M. Band Propagation, Scaling Laws, and Phase Transition in a Precipitate System III: Effect of the Anions of Precursors. J Phys Chem A 2020; 124:39-45. [DOI: 10.1021/acs.jpca.9b09448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manal Ammar
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh/Beirut, 1107 2020 Lebanon
| | - Mazen Al-Ghoul
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh/Beirut, 1107 2020 Lebanon
| |
Collapse
|
3
|
Torres-Guzmán JC, Buhse T, de la Calleja EM, González-Espinoza A, Martínez-Mekler G, Montoya-Nava F, Ramírez-Álvarez E, Rivera-Islas M, Rodríguez-Álvarez A, Müller MF. Irregular Liesegang-type patterns in gas phase revisited. I. Experimental setup, data processing, and test of the spacing law. J Chem Phys 2016; 144:174701. [PMID: 27155641 DOI: 10.1063/1.4946791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Since the early work on Liesegang rings in gels, they have been a reference point for the study of pattern formation in chemical physics. Here we present a variant of the Liesegang experiment in gas phase, where ammonia and hydrochloric acid react within a glass tube producing a precipitate, which deposits along the tube wall producing a spatial pattern. With this apparently simple experiment a wide range of rich phenomenon can be observed due to the presence of convective flows and irregular dynamics reminiscent of turbulent behavior, for which precise measurements are scarce. In this first part of our work, we describe in detail the experimental setup, the method of data acquisition, the image processing, and the procedure used to obtain an intensity profile, which is representative of the amount of precipitate deposited at the tube walls. Special attention is devoted to the techniques rendering a data series reliable for statistical studies and model building, which may contribute to a characterization and understanding of the pattern formation phenomenon under consideration. As a first step in this direction, based on our data, we are able to show that the observed band pattern follows, with slight deviations, the spacing law encountered in common Liesegang rings, despite that the experimental conditions are very different. A further statistical correlation analysis of the data constitutes Paper II of this research.
Collapse
Affiliation(s)
- José C Torres-Guzmán
- Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, Morelos 62209, Mexico
| | - Thomas Buhse
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, Morelos 62209, Mexico
| | - Elsa María de la Calleja
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, Cuernavaca, Morelos 62251, Mexico
| | - Alfredo González-Espinoza
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, Cuernavaca, Morelos 62251, Mexico
| | - Gustavo Martínez-Mekler
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, Cuernavaca, Morelos 62251, Mexico
| | - Fernando Montoya-Nava
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, Morelos 62209, Mexico
| | - Elizeth Ramírez-Álvarez
- Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, Morelos 62209, Mexico
| | - Marco Rivera-Islas
- Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, Morelos 62209, Mexico
| | - Aurora Rodríguez-Álvarez
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, Morelos 62209, Mexico
| | - Markus F Müller
- Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, Morelos 62209, Mexico
| |
Collapse
|