1
|
Gizatullin B, Mattea C, Stapf S. Effect of Exchange Dynamics on the NMR Relaxation of Water in Porous Silica. J Phys Chem Lett 2024; 15:11335-11341. [PMID: 39499855 PMCID: PMC11571216 DOI: 10.1021/acs.jpclett.4c02590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/07/2024]
Abstract
The interaction of molecules, in particular, water, with solid interfaces has been studied by a multitude of methods, among them nuclear magnetic resonance spin relaxation. The frequency dependence of the relaxation times follows patterns that have been interpreted in terms of the molecular orientation and dynamics. Several different model approaches could successfully explain limiting cases of 1H relaxation dispersion in systems with rigid surfaces such as silica gel or glass, but none of them can reproduce the relaxation of both 1H and 2H nuclei, which differ in their respective relaxation mechanisms, dipolar vs quadrupolar. From detailed studies of the dynamics of hydration of water in biological materials, the importance of hydrogen and molecular exchange to the longitudinal relaxation time of T1 was demonstrated. In this work, exchange times of both H2O and D2O in hydrophilic silica gel are varied in a controlled fashion in a wide range using disodium hydrogen phosphate, and the effect of physical exchange on spin relaxation is quantified for the first time in such systems using the exchange-mediated reorientation model.
Collapse
Affiliation(s)
- Bulat Gizatullin
- Dept.
Technische Physik II/Polymerphysik, Technische
Universität Ilmenau, D-98684 Ilmenau, Germany
| | - Carlos Mattea
- Dept.
Technische Physik II/Polymerphysik, Technische
Universität Ilmenau, D-98684 Ilmenau, Germany
| | - Siegfried Stapf
- Dept.
Technische Physik II/Polymerphysik, Technische
Universität Ilmenau, D-98684 Ilmenau, Germany
| |
Collapse
|
2
|
Hung ST, Roget SA, Fayer MD. Effects of Nanoconfinement on Dynamics in Concentrated Aqueous Magnesium Chloride Solutions. J Phys Chem B 2024; 128:5513-5527. [PMID: 38787935 DOI: 10.1021/acs.jpcb.4c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Water behavior in various natural and manufactured settings is influenced by confinement in organic or inorganic frameworks and the presence of solutes. Here, the effects on dynamics from both confinement and the addition of solutes are examined. Specifically, water and ion dynamics in concentrated (2.5-4.2 m) aqueous magnesium chloride solutions confined in mesoporous silica (2.8 nm pore diameter) were investigated using polarization selective pump-probe and 2D infrared spectroscopies. Fitting the rotational and spectral diffusion dynamics measured by the vibrational probe, selenocyanate, with a previously developed two-state model revealed distinct behaviors at the interior of the silica pores (core state) and near the wall of the confining framework (shell state). The shell dynamics are noticeably slower than the bulk, or core, dynamics. The concentration-dependent slowing of the dynamics aligns with behavior in the bulk solutions, but the spectrally separated water-associated and Mg2+-associated forms of the selenocyanate probe exhibit different responses to confinement. The disparity in the complete reorientation times is larger upon confinement, but the spectral diffusion dynamics become more similar near the silica surface. The length scales that characterize the transition from surface-influenced to bulk-like behavior for the salt solutions in the pores are discussed and compared to those of pure water and an organic solvent confined in the same pores. These comparisons offer insights into how confinement modulates the properties of different liquids.
Collapse
Affiliation(s)
- Samantha T Hung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sean A Roget
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Dupertuis N, Tarun OB, Lütgebaucks C, Roke S. Three-Dimensional Confinement of Water: H 2O Exhibits Long-Range (>50 nm) Structure while D 2O Does Not. NANO LETTERS 2022; 22:7394-7400. [PMID: 36067223 DOI: 10.1021/acs.nanolett.2c02206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water is the liquid of life thanks to its three-dimensional adaptive hydrogen (H)-bond network. Confinement of this network may lead to dramatic structural changes influencing chemical and physical transformations. Although confinement effects occur on a <1 nm length scale, the upper length scale limit is unknown. Here, we investigate 3D-confinement over lengths scales ranging from 58-140 nm. By confining water in zwitterionic liposomes of different sizes and measuring the change in H-bond network conformation using second harmonic scattering (SHS), we determined long-range confinement effects in light and heavy water. D2O displays no detectable 3D-confinement effects <58 nm (<3 × 106 D2O molecules). H2O is distinctly different. The vesicle enclosed inner H-bond network has a different conformation compared to the outside network and the SHS response scales with the volume of the confining space. H2O displays confinement effects over distances >100 nm (>2 × 107 H2O molecules).
Collapse
Affiliation(s)
- Nathan Dupertuis
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Orly B Tarun
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Cornelis Lütgebaucks
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering (IMX), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Senanayake HS, Greathouse JA, Thompson WH. Probing electrolyte–silica interactions through simulations of the infrared spectroscopy of nanoscale pores. J Chem Phys 2022; 157:034702. [DOI: 10.1063/5.0100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structural and dynamical properties of nanoconfined solutions can differ dramatically from those of the corresponding bulk systems. Understanding the changes induced by confinement is central to controlling the behavior of synthetic nanostructured materials and predicting the characteristics of biological and geochemical systems. A key outstanding issue is how the molecular-level behavior of nanoconfined electrolyte solutions is reflected in different experimental, particularly spectroscopic, measurements. This is addressed here through molecular dynamics simulations of the OH stretching infrared (IR) spectroscopy of NaCl, NaBr, and NaI solutions in isotopically dilute HOD/D2O confined in hydroxylated amorphous silica slit pores of width 1–6 nm and pH [Formula: see text]. In addition, the water reorientation dynamics and spectral diffusion, accessible by pump–probe anisotropy and two-dimensional IR measurements, are investigated. The aim is to elucidate the effect of salt identity, confinement, and salt concentration on the vibrational spectra. It is found that the IR spectra of the electrolyte solutions are only modestly blue-shifted upon confinement in amorphous silica slit pores, with both the size of the shift and linewidth increasing with the halide size, but these effects are suppressed as the salt concentration is increased. This indicates the limitations of linear IR spectroscopy as a probe of confined water. However, the OH reorientational and spectral diffusion dynamics are significantly slowed by confinement even at the lowest concentrations. The retardation of the dynamics eases with increasing salt concentration and pore width, but it exhibits a more complex behavior as a function of halide.
Collapse
Affiliation(s)
| | - Jeffery A. Greathouse
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
5
|
Hung ST, Yamada SA, Zheng W, Fayer MD. Ultrafast Dynamics and Liquid Structure in Mesoporous Silica: Propagation of Surface Effects in a Polar Aprotic Solvent. J Phys Chem B 2021; 125:10018-10034. [PMID: 34450013 DOI: 10.1021/acs.jpcb.1c04798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enhancement of processes ranging from gas sorption to ion conduction in a liquid can be substantial upon nanoconfinement. Here, the dynamics of a polar aprotic solvent, 1-methylimidazole (MeIm), in mesoporous silica (2.8, 5.4, and 8.3 nm pore diameters) were examined using femtosecond infrared vibrational spectroscopy and molecular dynamics simulations of a dilute probe, the selenocyanate (SeCN-) anion. The long vibrational lifetime and sensitivity of the CN stretch enabled a comprehensive investigation of the relatively slow time scales and subnanometer distance dependences of the confined dynamics. Because MeIm does not readily donate hydrogen bonds, its interactions in the hydrophilic silanol pores differ more from the bulk than those of water confined in the same mesopores, resulting in greater structural order and more dramatic slowing of dynamics. The extent of surface effects was quantified by modified two-state models used to fit three spatially averaged experimental observables: vibrational lifetime, orientational relaxation, and spectral diffusion. The length scales and the models (smoothed step, exponential decay, and simple step) describing the transitions between the distinctive shell behavior at the surface and the bulk-like behavior at the pore interior were compared to those of water. The highly nonuniform distributions of the SeCN- probe and antiparallel layering of MeIm revealed by the simulations guided the interpretation of the results and development of the analytical models. The results illustrate the importance of electrostatic effects and H-bonding interactions in the behavior of confined liquids.
Collapse
Affiliation(s)
- Samantha T Hung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven A Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Weizhong Zheng
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Senanayake HS, Greathouse JA, Ilgen AG, Thompson WH. Simulations of the IR and Raman spectra of water confined in amorphous silica slit pores. J Chem Phys 2021; 154:104503. [PMID: 33722003 DOI: 10.1063/5.0040739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Water in nano-scale confining environments is a key element in many biological, material, and geological systems. The structure and dynamics of the liquid can be dramatically modified under these conditions. Probing these changes can be challenging, but vibrational spectroscopy has emerged as a powerful tool for investigating their behavior. A critical, evolving component of this approach is a detailed understanding of the connection between spectroscopic features and molecular-level details. In this paper, this issue is addressed by using molecular dynamics simulations to simulate the linear infrared (IR) and Raman spectra for isotopically dilute HOD in D2O confined in hydroxylated amorphous silica slit pores. The effect of slit-pore width and hydroxyl density on the silica surface on the vibrational spectra is also investigated. The primary effect of confinement is a blueshift in the frequency of OH groups donating a hydrogen bond to the silica surface. This appears as a slight shift in the total (measurable) spectra but is clearly seen in the distance-based IR and Raman spectra. Analysis indicates that these changes upon confinement are associated with the weaker hydrogen-bond accepting properties of silica oxygens compared to water molecules.
Collapse
Affiliation(s)
| | - Jeffery A Greathouse
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
7
|
Piskulich ZA, Laage D, Thompson WH. On the role of hydrogen-bond exchanges in the spectral diffusion of water. J Chem Phys 2021; 154:064501. [PMID: 33588543 DOI: 10.1063/5.0041270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dynamics of a vibrational frequency in a condensed phase environment, i.e., the spectral diffusion, has attracted considerable interest over the last two decades. A significant impetus has been the development of two-dimensional infrared (2D-IR) photon-echo spectroscopy that represents a direct experimental probe of spectral diffusion, as measured by the frequency-frequency time correlation function (FFCF). In isotopically dilute water, which is perhaps the most thoroughly studied system, the standard interpretation of the longest timescale observed in the FFCF is that it is associated with hydrogen-bond exchange dynamics. Here, we investigate this connection by detailed analysis of both the spectral diffusion timescales and their associated activation energies. The latter are obtained from the recently developed fluctuation theory for the dynamics approach. The results show that the longest timescale of spectral diffusion obtained by the typical analysis used cannot be directly associated with hydrogen-bond exchanges. The hydrogen-bond exchange time does appear in the decay of the water FFCF, but only as an additional, small-amplitude (<3%) timescale. The dominant contribution to the long-time spectral diffusion dynamics is considerably shorter than the hydrogen-bond exchange time and exhibits a significantly smaller activation energy. It thus arises from hydrogen-bond rearrangements, which occur in between successful hydrogen-bond partner exchanges, and particularly from hydrogen bonds that transiently break before returning to the same acceptor.
Collapse
Affiliation(s)
- Zeke A Piskulich
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Damien Laage
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
8
|
Gaweł BA, Ulvensøen A, Łukaszuk K, Arstad B, Muggerud AMF, Erbe A. Structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz. RSC Adv 2020; 10:29018-29030. [PMID: 35520046 PMCID: PMC9055915 DOI: 10.1039/d0ra05798c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022] Open
Abstract
Fused silica crucibles are commonly used in the fabrication process of solar grade silicon ingots. These crucibles are manufactured from high purity natural quartz sand and as a consequence, their properties are influenced by the presence of water and hydroxyls in the raw quartz. In this work, diffuse reflectance IR, 1H magic angle spinning NMR, and Raman spectroscopy were used to investigate the influence of thermal treatment on water and hydroxyl groups in high purity natural quartz sand. Most of the water in dry sand is present in the form of closed inclusions within the quartz grains which were detected in Raman imaging studies, even after thermally treating the samples at 600 °C. Only after heating to 900 °C did this water completely vanish, most likely as a result of rupturing of the inclusions. However, newly formed OH groups, identified as isolated and hydrogen bound OH were observed as products of the reaction between water and quartz. Similarly, liquid water was observed in NMR spectra even after treatment at 600 °C while at temperatures >900 °C, only non-interacting silanol groups were present. The comparison of the temperature dependence of the IR and NMR spectra also yields insight into the assignment of the OH stretching mode region of the IR spectrum in this system. The intensity of water related bands decreases while the intensity of OH bands first increases and then decreases with increasing temperature. The band intensity of Al-rich defects as well as the characteristic feature at 3200 cm−1 does not follow the temperature dependence of typical water peaks. It is also shown that leaching the quartz sand in HF solution helps to remove water from inclusions, likely by forming pathways for fluid flow inside the quartz grains. Milling of the samples caused formation of an additional type of hydroxyl group, possibly due to partial amorphisation of the surfaces of the quartz grains surface during the process. The results improve the basis for a knowledge-based processes development for the processing of high purity natural quartz. In dry quartz stable closed liquid micron-size inclusions and newly formed OH groups were observed after thermal treatment.![]()
Collapse
Affiliation(s)
- Bartłomiej A Gaweł
- Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology 7491 Trondheim Norway +47 73 594048
| | - Anna Ulvensøen
- Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology 7491 Trondheim Norway +47 73 594048
| | | | | | | | - Andreas Erbe
- Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology 7491 Trondheim Norway +47 73 594048
| |
Collapse
|
9
|
Yamada SA, Hung ST, Thompson WH, Fayer MD. Effects of pore size on water dynamics in mesoporous silica. J Chem Phys 2020; 152:154704. [DOI: 10.1063/1.5145326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Samantha T. Hung
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
10
|
Affiliation(s)
- Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
11
|
Alarcos N, Cohen B, Ziółek M, Douhal A. Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. Chem Rev 2017; 117:13639-13720. [PMID: 29068670 DOI: 10.1021/acs.chemrev.7b00422] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Silica-based materials (SBMs) are widely used in catalysis, photonics, and drug delivery. Their pores and cavities act as hosts of diverse guests ranging from classical dyes to drugs and quantum dots, allowing changes in the photochemical behavior of the confined guests. The heterogeneity of the guest populations as well as the confinement provided by these hosts affect the behavior of the formed hybrid materials. As a consequence, the observed reaction dynamics becomes significantly different and complex. Studying their photobehavior requires advanced laser-based spectroscopy and microscopy techniques as well as computational methods. Thanks to the development of ultrafast (spectroscopy and imaging) tools, we are witnessing an increasing interest of the scientific community to explore the intimate photobehavior of these composites. Here, we review the recent theoretical and ultrafast experimental studies of their photodynamics and discuss the results in comparison to those in homogeneous media. The discussion of the confined dynamics includes solvation and intra- and intermolecular proton-, electron-, and energy transfer events of the guest within the SBMs. Several examples of applications in photocatalysis, (photo)sensors, photonics, photovoltaics, and drug delivery demonstrate the vast potential of the SBMs in modern science and technology.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Marcin Ziółek
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University , Umultowska 85, 61-614 Poznań, Poland
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| |
Collapse
|
12
|
Mesele OO, Thompson WH. A "Universal" Spectroscopic Map for the OH Stretching Mode in Alcohols. J Phys Chem A 2017; 121:5823-5833. [PMID: 28715218 DOI: 10.1021/acs.jpca.7b05836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Empirical maps are presented for the OH stretching vibrations in neat alcohols in which the relevant spectroscopic quantities are expressed in terms of the electric field exerted on the hydrogen atom by the surrounding liquid. It is found, by examination of the four lowest linear alcohols, methanol, ethanol, n-propanol, and n-butanol, that a single map can be used for alcohols with different alkyl groups. This "universal" map is in very good agreement with maps optimized for the individual alcohols but differs from those previously developed for water. This suggests that one map can be used for all alcohols, perhaps even those not examined in the present study. The universal map gives IR lineshapes in good agreement with measured spectra for isotopically dilute methanol and ethanol, while the two-dimensional IR photon echo spectra give results that differ from experiments. The role of non-Condon effects, reorientation dynamics, hydrogen bonding, and spectral diffusion is discussed.
Collapse
Affiliation(s)
- Oluwaseun O Mesele
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| | - Ward H Thompson
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|
13
|
Yamada SA, Thompson WH, Fayer MD. Water-anion hydrogen bonding dynamics: Ultrafast IR experiments and simulations. J Chem Phys 2017. [DOI: 10.1063/1.4984766] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
14
|
Kuon N, Milischuk AA, Ladanyi BM, Flenner E. Self-intermediate scattering function analysis of supercooled water confined in hydrophilic silica nanopores. J Chem Phys 2017; 146:214501. [PMID: 28595416 DOI: 10.1063/1.4984764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the temperature dependence of the self-intermediate scattering function for supercooled water confined in hydrophilic silica nanopores. We simulate the simple point charge/extended model of water confined to pores of radii 20 Å, 30 Å, and 40 Å over a temperature range of 210 K to 250 K. First, we examine the temperature dependence of the structure of the water and find that there is layering next to the pore surface for all temperatures and diameters. However, there exists a region in the center of the pore where the density is nearly constant. Using the density profile, we divide confined water into different regions and compare the dynamics of the water molecules that start in these regions. To this end, we examine the mean-squared displacement and the self-intermediate scattering functions for the water hydrogens, which would allow one to connect our results with quasi-elastic neutron scattering experiments. We examine the dependence of the self-intermediate scattering function on the magnitude and direction of the wavevector, as well as the proximity to the silica surface. We also examine the rotational-translational decoupling. We find that the anisotropy of the dynamics and the rotational-translational decoupling is weakly temperature dependent.
Collapse
Affiliation(s)
- Nicholas Kuon
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - Anatoli A Milischuk
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| | - Branka M Ladanyi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| |
Collapse
|
15
|
Gierada M, Petit I, Handzlik J, Tielens F. Hydration in silica based mesoporous materials: a DFT model. Phys Chem Chem Phys 2016; 18:32962-32972. [DOI: 10.1039/c6cp05460a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, calculable and realistic DFT models of MCM-41 material that follow temperature dependence of silanol density were developed. They can be easily applied in further studies of adsorption or as a support for catalysts.
Collapse
Affiliation(s)
- Maciej Gierada
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Kraków
- Poland
| | - Ivan Petit
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 7574
- Laboratoire Chimie de la Matière Condensée
- Collège de France
| | - Jarosław Handzlik
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Kraków
- Poland
| | - Frederik Tielens
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 7574
- Laboratoire Chimie de la Matière Condensée
- Collège de France
| |
Collapse
|