1
|
Cai R, Lan Y. A modified variational approach to noisy cell signaling. J Chem Phys 2024; 161:165103. [PMID: 39441120 DOI: 10.1063/5.0231660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Signaling in cells is full of noise and, hence, described with stochastic biochemical models. Thus, an efficient computation algorithm for these fluctuating reactions is much needed. Apart from the very popular Monte Carlo simulation, methods based on probability distributions are frequently desired due to their analytical tractability and possible numerical advantages in diverse circumstances, among which the variational approach is the most notable. In this paper, new basis functions are proposed to better depict possibly complex distribution profiles, and an extra regularization scheme is supplied to the variational equation to remove occasional degeneracy-induced singularities during the evolution. The new extension is applied to four typical biochemical reaction models and restores the Gillespie results accurately but with greatly reduced simulation time. This modified variational approach is expected to work in a wide range of cell signaling networks.
Collapse
Affiliation(s)
- Ruobing Cai
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yueheng Lan
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
- Key Laboratory of Mathematics and Information Networks (Ministry of Education), Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
2
|
Zhang J, Chen A, Qiu H, Zhang J, Tian T, Zhou T. Exact results for gene-expression models with general waiting-time distributions. Phys Rev E 2024; 109:024119. [PMID: 38491572 DOI: 10.1103/physreve.109.024119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/19/2024] [Indexed: 03/18/2024]
Abstract
Complex molecular details of transcriptional regulation can be coarse-grained by assuming that reaction waiting times for promoter-state transitions, the mRNA synthesis, and the mRNA degradation follow general distributions. However, how such a generalized two-state model is analytically solved is a long-standing issue. Here we first present analytical formulas of burst-size distributions for this model. Then, we derive an iterative equation for the mRNA moment-generating function, by which mRNA raw and binomial moments of any order can be conveniently calculated. The analytical results obtained in the special cases of phase-type waiting-time distributions not only provide insights into the mechanisms of complex transcriptional regulations but also bring conveniences for experimental data-based statistical inferences.
Collapse
Affiliation(s)
- Jinqiang Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Aimin Chen
- School of Mathematics and Statistics, Henan University, Kaifeng 475004, China
| | - Huahai Qiu
- School of Mathematics and Computers, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
- Key Laboratory of Computational Mathematics, Guangdong Province, Guangzhou 510275, People's Republic of China
| | - Tianhai Tian
- School of Mathematics, Monash University, Clayton 3800, Australia
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
- Key Laboratory of Computational Mathematics, Guangdong Province, Guangzhou 510275, People's Republic of China
| |
Collapse
|
3
|
Luo S, Zhang Z, Wang Z, Yang X, Chen X, Zhou T, Zhang J. Inferring transcriptional bursting kinetics from single-cell snapshot data using a generalized telegraph model. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221057. [PMID: 37035293 PMCID: PMC10073913 DOI: 10.1098/rsos.221057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Gene expression has inherent stochasticity resulting from transcription's burst manners. Single-cell snapshot data can be exploited to rigorously infer transcriptional burst kinetics, using mathematical models as blueprints. The classical telegraph model (CTM) has been widely used to explain transcriptional bursting with Markovian assumptions. However, growing evidence suggests that the gene-state dwell times are generally non-exponential, as gene-state switching is a multi-step process in organisms. Therefore, interpretable non-Markovian mathematical models and efficient statistical inference methods are urgently required in investigating transcriptional burst kinetics. We develop an interpretable and tractable model, the generalized telegraph model (GTM), to characterize transcriptional bursting that allows arbitrary dwell-time distributions, rather than exponential distributions, to be incorporated into the ON and OFF switching process. Based on the GTM, we propose an inference method for transcriptional bursting kinetics using an approximate Bayesian computation framework. This method demonstrates an efficient and scalable estimation of burst frequency and burst size on synthetic data. Further, the application of inference to genome-wide data from mouse embryonic fibroblasts reveals that GTM would estimate lower burst frequency and higher burst size than those estimated by CTM. In conclusion, the GTM and the corresponding inference method are effective tools to infer dynamic transcriptional bursting from static single-cell snapshot data.
Collapse
Affiliation(s)
- Songhao Luo
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Xiyan Yang
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, People's Republic of China
| | - Xiaoxuan Chen
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| |
Collapse
|
4
|
Yang X, Wang Z, Wu Y, Zhou T, Zhang J. Kinetic characteristics of transcriptional bursting in a complex gene model with cyclic promoter structure. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:3313-3336. [PMID: 35341253 DOI: 10.3934/mbe.2022153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While transcription often occurs in a bursty manner, various possible regulations can lead to complex promoter patterns such as promoter cycles, giving rise to an important question: How do promoter kinetics shape transcriptional bursting kinetics? Here we introduce and analyze a general model of the promoter cycle consisting of multi-OFF states and multi-ON states, focusing on the effects of multi-ON mechanisms on transcriptional bursting kinetics. The derived analytical results indicate that burst size follows a mixed geometric distribution rather than a single geometric distribution assumed in previous studies, and ON and OFF times obey their own mixed exponential distributions. In addition, we find that the multi-ON mechanism can lead to bimodal burst-size distribution, antagonistic timing of ON and OFF, and diverse burst frequencies, each further contributing to cell-to-cell variability in the mRNA expression level. These results not only reveal essential features of transcriptional bursting kinetics patterns shaped by multi-state mechanisms but also can be used to the inferences of transcriptional bursting kinetics and promoter structure based on experimental data.
Collapse
Affiliation(s)
- Xiyan Yang
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, China
| | - Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yahao Wu
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Yang X, Luo S, Zhang Z, Wang Z, Zhou T, Zhang J. Silent transcription intervals and translational bursting lead to diverse phenotypic switching. Phys Chem Chem Phys 2022; 24:26600-26608. [DOI: 10.1039/d2cp03703c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
For complex process of gene expression, we use theoretical analysis and stochastic simulations to study the phenotypic diversity induced by silent transcription intervals and translational bursting.
Collapse
Affiliation(s)
- Xiyan Yang
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, P. R. China
| | - Songhao Luo
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| | - Zhenquan Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| | - Zihao Wang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| |
Collapse
|
6
|
Chen M, Luo S, Cao M, Guo C, Zhou T, Zhang J. Exact distributions for stochastic gene expression models with arbitrary promoter architecture and translational bursting. Phys Rev E 2022; 105:014405. [PMID: 35193181 DOI: 10.1103/physreve.105.014405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/14/2021] [Indexed: 11/07/2022]
Abstract
Gene expression in individual cells is inherently variable and sporadic, leading to cell-to-cell variability in mRNA and protein levels. Recent single-cell and single-molecule experiments indicate that promoter architecture and translational bursting play significant roles in controlling gene expression noise and generating the phenotypic diversity that life exhibits. To quantitatively understand the impact of these factors, it is essential to construct an accurate mathematical description of stochastic gene expression and find the exact analytical results, which is a formidable task. Here, we develop a stochastic model of bursty gene expression, which considers the complex promoter architecture governing the variability in mRNA expression and a general distribution characterizing translational burst. We derive the analytical expression for the corresponding protein steady-state distribution and all moment statistics of protein counts. We show that the total protein noise can be decomposed into three parts: the low-copy noise of protein due to probabilistic individual birth and death events, the noise due to stochastic switching between promoter states, and the noise resulting from translational busting. The theoretical results derived provide quantitative insights into the biochemical mechanisms of stochastic gene expression.
Collapse
Affiliation(s)
- Meiling Chen
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, People's Republic of China.,School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Songhao Luo
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, People's Republic of China.,School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Mengfang Cao
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, People's Republic of China.,School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Chengjun Guo
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510275, People's Republic of China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, People's Republic of China.,School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, People's Republic of China.,School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
7
|
Li Y, Jiang DQ, Jia C. Steady-state joint distribution for first-order stochastic reaction kinetics. Phys Rev E 2021; 104:024408. [PMID: 34525607 DOI: 10.1103/physreve.104.024408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/19/2021] [Indexed: 11/07/2022]
Abstract
While the analytical solution for the marginal distribution of a stochastic chemical reaction network has been extensively studied, its joint distribution, i.e., the solution of a high-dimensional chemical master equation, has received much less attention. Here we develop an alternative method of computing the exact joint distributions of a wide class of first-order stochastic reaction systems in steady-state conditions. The effectiveness of our method is validated by applying it to four gene expression models of biological significance, including models with 2A peptides, nascent mRNA, gene regulation, translational bursting, and alternative splicing.
Collapse
Affiliation(s)
- Youming Li
- LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China.,Applied and Computational Mathematics Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Da-Quan Jiang
- LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China.,Center for Statistical Science, Peking University, Beijing 100871, China
| | - Chen Jia
- Applied and Computational Mathematics Division, Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
8
|
Zhang Z, Deng Q, Wang Z, Chen Y, Zhou T. Exact results for queuing models of stochastic transcription with memory and crosstalk. Phys Rev E 2021; 103:062414. [PMID: 34271765 DOI: 10.1103/physreve.103.062414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/03/2021] [Indexed: 11/07/2022]
Abstract
Gene transcription is a complex multistep biochemical process, which can create memory between individual reaction events. On the other hand, many inducible genes, when activated by external cues, are often coregulated by several competitive pathways with crosstalk. This raises an unexplored question: how do molecular memory and crosstalk together affect gene expressions? To address this question, we introduce a queuing model of stochastic transcription, where two crossing signaling pathways are used to direct gene activation in response to external signals and memory functions to model multistep reaction processes involved in transcription. We first establish, based on the total probability principle, the chemical master equation for this queuing model, and then we derive, based on the binomial moment approach, exact expressions for statistical quantities (including distributions) of mRNA, which provide insights into the roles of crosstalk and memory in controlling the mRNA level and noise. We find that molecular memory of gene activation decreases the mRNA level but increases the mRNA noise, and double activation pathways always reduce the mRNA noise in contrast to a single pathway. In addition, we find that molecular memory can make the mRNA bimodality disappear.
Collapse
Affiliation(s)
- Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiqi Deng
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiren Chen
- College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Chen M, Zhou T, Zhang J. Correlation between external regulators governs the mean-noise relationship in stochastic gene expression. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:4713-4730. [PMID: 34198461 DOI: 10.3934/mbe.2021239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gene transcription in single cells is inherently a probabilistic process. The relationship between variance ($ \sigma^{2} $) and mean expression ($ \mu $) is of paramount importance for investigations into the evolutionary origins and consequences of noise in gene expression. It is often formulated as $ \log \left({{{\sigma}^{2}}}/{{{\mu}^{2}}}\; \right) = \beta\log\mu+\log\alpha $, where $ \beta $ is a key parameter since its sign determines the qualitative dependence of noise on mean. We reveal that the sign of $ \beta $ is controlled completely by external regulation, but independent of promoter structure. Specifically, it is negative if regulators as stochastic variables are independent but positive if they are correlated. The essential mechanism revealed here can well interpret diverse experimental phenomena underlying expression noise. Our results imply that external regulation rather than promoter sequence governs the mean-noise relationship.
Collapse
Affiliation(s)
- Meiling Chen
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Shi C, Jiang Y, Zhou T. Queuing Models of Gene Expression: Analytical Distributions and Beyond. Biophys J 2020; 119:1606-1616. [PMID: 32966761 DOI: 10.1016/j.bpj.2020.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
Activation of a gene is a multistep biochemical process, involving recruitments of transcription factors and histone kinases as well as modification of histones. Many of these intermediate reaction steps would have been unspecified by experiments. Therefore, classical two-state models of gene expression established based on the memoryless (or Markovian) assumption would not well describe the reality in gene expression. Recent experimental data have indicated that the inactive phases of gene promoters are differently distributed, showing strong memory. Here, we use a nonexponential waiting-time distribution to model the complex activation process of a gene, and then analyze a queuing model of stochastic transcription. We successfully derive the analytical expression of the stationary mRNA distribution, which provides insight into the effect of molecular memory created by complex activating events on the mRNA expression. We find that the reduction in the waiting-time noise may result in the increase in the mRNA noise, contrary to the previous conclusion. Based on the derived distribution, we also develop a method to infer the waiting-time distribution from a known mRNA distribution. Data analysis on a realistic example verifies the validity of this method.
Collapse
Affiliation(s)
- Changhong Shi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China.
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Tianshou Zhou
- School of Mathematics and Computational Science and Guangdong Province Key Laboratory of Computational Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Kang YM, Liu RN. Moment dynamics for gene regulation with rational rate laws. Phys Rev E 2020; 102:042407. [PMID: 33212610 DOI: 10.1103/physreve.102.042407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
This aim of this paper is mainly to investigate the performance of two typical moment closure schemes in gene regulatory master equations of rational rate laws. When the reaction rate is polynomial, the error bounds between the authentic and approximate moments obtained by schemes of Gaussian moment closure and log-normal moment closure are explicitly given. When the reaction rate is not polynomial, it is shown that the two schemes both behave well in the absence of active-inactive state switch, but in the presence of active-inactive state switch the log-normal closure scheme is far superior to the Gaussian closure scheme in capturing the asymptotic ensemble statistics. Moreover, the accuracy of the log-normal closure method is further confirmed by steady-state analytic results and the conditional Gaussian closure method. It is also disclosed that optimal negative feedback exists in suppressing protein noise in the presence of the on-off switch control.
Collapse
Affiliation(s)
- Yan-Mei Kang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ruo-Nan Liu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
12
|
Liu RN, Kang YM. Stochastic master equation for early protein aggregation in the transthyretin amyloid disease. Sci Rep 2020; 10:12437. [PMID: 32709875 PMCID: PMC7381670 DOI: 10.1038/s41598-020-69319-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
It is significant to understand the earliest molecular events occurring in the nucleation of the amyloid aggregation cascade for the prevention of amyloid related diseases such as transthyretin amyloid disease. We develop chemical master equation for the aggregation of monomers into oligomers using reaction rate law in chemical kinetics. For this stochastic model, lognormal moment closure method is applied to track the evolution of relevant statistical moments and its high accuracy is confirmed by the results obtained from Gillespie's stochastic simulation algorithm. Our results show that the formation of oligomers is highly dependent on the number of monomers. Furthermore, the misfolding rate also has an important impact on the process of oligomers formation. The quantitative investigation should be helpful for shedding more light on the mechanism of amyloid fibril nucleation.
Collapse
Affiliation(s)
- Ruo-Nan Liu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yan-Mei Kang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| |
Collapse
|
13
|
Cao Z, Grima R. Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data. J R Soc Interface 2019; 16:20180967. [PMID: 30940028 PMCID: PMC6505555 DOI: 10.1098/rsif.2018.0967] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bayesian and non-Bayesian moment-based inference methods are commonly used to estimate the parameters defining stochastic models of gene regulatory networks from noisy single cell or population snapshot data. However, a systematic investigation of the accuracy of the predictions of these methods remains missing. Here, we present the results of such a study using synthetic noisy data of a negative auto-regulatory transcriptional feedback loop, one of the most common building blocks of complex gene regulatory networks. We study the error in parameter estimation as a function of (i) number of cells in each sample; (ii) the number of time points; (iii) the highest-order moment of protein fluctuations used for inference; (iv) the moment-closure method used for likelihood approximation. We find that for sample sizes typical of flow cytometry experiments, parameter estimation by maximizing the likelihood is as accurate as using Bayesian methods but with a much reduced computational time. We also show that the choice of moment-closure method is the crucial factor determining the maximum achievable accuracy of moment-based inference methods. Common likelihood approximation methods based on the linear noise approximation or the zero cumulants closure perform poorly for feedback loops with large protein-DNA binding rates or large protein bursts; this is exacerbated for highly heterogeneous cell populations. By contrast, approximating the likelihood using the linear-mapping approximation or conditional derivative matching leads to highly accurate parameter estimates for a wide range of conditions.
Collapse
|
14
|
Din A, Liang J, Zhou T. Detecting critical transitions in the case of moderate or strong noise by binomial moments. Phys Rev E 2018; 98:012114. [PMID: 30110757 DOI: 10.1103/physreve.98.012114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/19/2023]
Abstract
Detecting critical transitions in the case of moderate or strong noise (collectively referred to as big noise) is challenging, since such noise can make a critical transition point far from the bifurcation point, leading to the failure of traditional small-noise methods. To handle this tough issue, we first transform a generic noisy system into a linear set of binomial moment equations (BMEs). Then, we can solve a closed set of BMEs obtained by truncation and use the resulting binomial moments to reconstruct a joint probability distribution of the state variables of the original system. Third, we derive a leading indicator from the closed set of BMEs. Importantly, the reconstructed distribution determines the way of critical transition (i.e., critical transition is distribution transition rather than state transition in the strong-noise case) as the system comes close to the critical transition point, whereas the derived indicator anticipates when the distribution transition occurs. Our theory has broad applications, and artificial and data examples exhibit its power.
Collapse
Affiliation(s)
- Anwarud Din
- Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Junhao Liang
- Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Tianshou Zhou
- Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.,Key Laboratory of Computational Mathematics, Guangdong Province, Guangzhou 510275, People's Republic of China
| |
Collapse
|
15
|
Liang J, Din A, Zhou T. Linear approximations of global behaviors in nonlinear systems with moderate or strong noise. J Chem Phys 2018; 148:104105. [PMID: 29544279 DOI: 10.1063/1.5012885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While many physical or chemical systems can be modeled by nonlinear Langevin equations (LEs), dynamical analysis of these systems is challenging in the cases of moderate and strong noise. Here we develop a linear approximation scheme, which can transform an often intractable LE into a linear set of binomial moment equations (BMEs). This scheme provides a feasible way to capture nonlinear behaviors in the sense of probability distribution and is effective even when the noise is moderate or big. Based on BMEs, we further develop a noise reduction technique, which can effectively handle tough cases where traditional small-noise theories are inapplicable. The overall method not only provides an approximation-based paradigm to analysis of the local and global behaviors of nonlinear noisy systems but also has a wide range of applications.
Collapse
Affiliation(s)
- Junhao Liang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Anwarud Din
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
16
|
MacLean AL, Hong T, Nie Q. Exploring intermediate cell states through the lens of single cells. CURRENT OPINION IN SYSTEMS BIOLOGY 2018; 9:32-41. [PMID: 30450444 PMCID: PMC6238957 DOI: 10.1016/j.coisb.2018.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As our catalog of cell states expands, appropriate characterization of these states and the transitions between them is crucial. Here we discuss the roles of intermediate cell states (ICSs) in this growing collection. We begin with definitions and discuss evidence for the existence of ICSs and their relevance in various tissues. We then provide a list of possible functions for ICSs with examples. Finally, we describe means by which ICSs and their functional roles can be identified from single-cell data or predicted from models.
Collapse
Affiliation(s)
- Adam L. MacLean
- Department of Mathematics and Center for Complex Biological Systems, University of California, Irvine, CA 92697, United States
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37966, United States
| | - Qing Nie
- Department of Mathematics and Center for Complex Biological Systems, University of California, Irvine, CA 92697, United States,Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States
| |
Collapse
|
17
|
Kazeroonian A, Theis FJ, Hasenauer J. A scalable moment-closure approximation for large-scale biochemical reaction networks. Bioinformatics 2018; 33:i293-i300. [PMID: 28881983 PMCID: PMC5870627 DOI: 10.1093/bioinformatics/btx249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Motivation Stochastic molecular processes are a leading cause of cell-to-cell variability. Their dynamics are often described by continuous-time discrete-state Markov chains and simulated using stochastic simulation algorithms. As these stochastic simulations are computationally demanding, ordinary differential equation models for the dynamics of the statistical moments have been developed. The number of state variables of these approximating models, however, grows at least quadratically with the number of biochemical species. This limits their application to small- and medium-sized processes. Results In this article, we present a scalable moment-closure approximation (sMA) for the simulation of statistical moments of large-scale stochastic processes. The sMA exploits the structure of the biochemical reaction network to reduce the covariance matrix. We prove that sMA yields approximating models whose number of state variables depends predominantly on local properties, i.e. the average node degree of the reaction network, instead of the overall network size. The resulting complexity reduction is assessed by studying a range of medium- and large-scale biochemical reaction networks. To evaluate the approximation accuracy and the improvement in computational efficiency, we study models for JAK2/STAT5 signalling and NF κ B signalling. Our method is applicable to generic biochemical reaction networks and we provide an implementation, including an SBML interface, which renders the sMA easily accessible. Availability and implementation The sMA is implemented in the open-source MATLAB toolbox CERENA and is available from https://github.com/CERENADevelopers/CERENA . Contact jan.hasenauer@helmholtz-muenchen.de or atefeh.kazeroonian@tum.de. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Atefeh Kazeroonian
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Department of Mathematics, Technische Universität München, Garching, Germany.,Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Fakultät für Medizin, Technische Universität München, München, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Department of Mathematics, Technische Universität München, Garching, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Department of Mathematics, Technische Universität München, Garching, Germany
| |
Collapse
|