1
|
Zhang J, Buren B, Li Y. Study on Quantum Dynamics of the Na + Na 2 Exchanged Reaction and Lifetime Prediction of Na 3 Complex Based on the Neural Network Potential Energy Surface. J Phys Chem A 2024; 128:9634-9644. [PMID: 39441117 DOI: 10.1021/acs.jpca.4c05712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A high-precision global potential energy surface (PES) is constructed for the Na3 system based on high-level ab initio calculations and the fundamental invariant neural network (FI-NN) method. The root-mean-square error (RMSE) of the PES is 2.88 cm-1. The state-resolved quantum dynamics of the ground-state Na + Na2 (v = 0, j = 0) → Na2 (v', j') + Na reaction is studied using the time-dependent wave packet (TDWP) method on the new PES. Analysis of the relevant integral cross sections revealed a complicated energy-transfer mechanism during collisions. Similarly, the characteristics of the differential cross sections indicate that the complex-forming mechanism plays a dominant role in the reaction, providing conditions for a comprehensive exploration of the lifetimes of the complexes. Based on the Rice-Ramsperger-Kassel-Marcus (RRKM) theory, the calculated lifetime of the Na3 complex is approximately 3.9 ns.
Collapse
Affiliation(s)
- Jiapeng Zhang
- Department of Physics, Liaoning University, Shenyang 110036, China
| | - Bayaer Buren
- School of Science, Shenyang University of Technology, Shenyang 110870, China
| | - Yongqing Li
- Department of Physics, Liaoning University, Shenyang 110036, China
| |
Collapse
|
2
|
Li W, Liang Y, Niu X, He D, Xing W, Zhang Y. Construction of diabatic potential energy surfaces for the SiH2+ system and dynamics studies of the Si+(2P1/2, 3/2) + H2 reaction. J Chem Phys 2024; 161:044310. [PMID: 39051835 DOI: 10.1063/5.0219621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
The construction of diabatic potential energy surfaces (PESs) for the SiH2+ system, related to the ground (12A') and excited states (22A'), has been successfully achieved. This was accomplished by utilizing high-level ab initio energy points, employing a neural network fitting method in conjunction with a specifically designed function. The newly constructed diabatic PESs are carefully examined for dynamics calculations of the Si+(2P1/2, 3/2) + H2 reaction. Through time-dependent quantum wave packet calculations, the reaction probabilities, integral cross sections (ICSs), and differential cross sections (DCSs) of the Si+(2P1/2, 3/2) + H2 reaction were reported. The dynamics results indicate that the total ICS is in excellent agreement with experimental data within the collision energy range studied. The results also indicate that the SiH+ ion is hardly formed via the Si+(2P3/2) + H2 reaction. The results from the DCSs suggest that the "complex-forming" reaction mechanism predominates in the low collision energy region. Conversely, the forward abstraction reaction mechanism is dominant in the high collision energy region.
Collapse
Affiliation(s)
- Wentao Li
- Weifang University of Science and Technology, Shouguang 262700, China
| | - Yongping Liang
- Weifang University of Science and Technology, Shouguang 262700, China
| | - Xianghong Niu
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Di He
- Weifang University of Science and Technology, Shouguang 262700, China
| | - Wei Xing
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Yong Zhang
- Department of Physics, Tonghua Normal University, Tonghua, Jilin 134002, China
| |
Collapse
|
3
|
Chang H, Li W, Sun Z. New Potential Energy Surface for the H + Cl 2 Reaction and Quantum Dynamics Studies. J Phys Chem A 2024; 128:4425-4438. [PMID: 38805307 DOI: 10.1021/acs.jpca.4c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The reaction of H + Cl2 → HCl + Cl plays a crucial role in various fields. However, no previous study has investigated this reaction using accurate quantum mechanical methods. In this paper, we construct a global potential energy surface (PES) using the neural network method with more than 20,000 ab initio energies obtained by the MRCI-F12+Q method with the aug-cc-pV5Z basis and extrapolated to the complete basis set limit. The spin-orbit coupling of the Cl atom has been considered in the PES. With this new PES, product state-resolved quantum dynamics calculations for the H + Cl2 (v0 = 0, j0 = 0-2) → HCl + Cl reaction was carried out. Numerical results show that the initial rotational excitation of the Cl2 has negligible effects on the reactivity. Product state-resolved integral cross sections (ICS) and rate constants reveal that the HCl is most favorably produced in its v' = 2 vibrational state. The calculated product vibrational state-resolved and total reaction rate constants suggest that the new global PES is accurate enough, as compared with the available experimental measurements.
Collapse
Affiliation(s)
- Hanwen Chang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wentao Li
- Weifang University of Science and Technology, Shouguang 262700, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Chang H, Li W, Sun Z. Product State-Resolved Reactive Scattering Studies of the H + Cl 2 ( v0 = 1-3, j0 = 0) → HCl + Cl Reaction by the Time-Dependent Wave Packet Method. J Phys Chem A 2024; 128:2997-3006. [PMID: 38593417 DOI: 10.1021/acs.jpca.4c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The typical hydrogen atom plus halogen molecule reaction H + Cl2 → HCl + Cl has implications across many fields. In this paper, product state-resolved quantum dynamics calculations for the vibrationally excited reaction H + Cl2 (v0 = 1-3, j0 = 0) → HCl + Cl were conducted using the time-dependent wave packet method on a newly developed accurate potential energy surface. Numerical results indicate that the initial vibrational excitation of Cl2 does enhance the reactivity for this early barrier reaction, although less than the enhancement of the translational energy. The calculated product vibrational state-resolved integral cross sections and rate constants reveal that the product vibrational state distribution and the initial vibrational state of Cl2 are highly correlated. The thermal rate constant in the temperature range from 100 to 1000 K was given and is found to be in reasonable agreement with the experimental measurements.
Collapse
Affiliation(s)
- Hanwen Chang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wentao Li
- Weifang University of Science and Technology, Shouguang 262700, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Zhu Z, Zhang A, He D, Li W. A new global potential energy surface of the SH 2+(X 4A'') system and quantum calculations for the S + + H 2( v = 0-3, j = 0) reaction. Phys Chem Chem Phys 2021; 23:4757-4767. [PMID: 33599223 DOI: 10.1039/d0cp06335e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new global potential energy surface (PES) for the ground state of the SH2+(X4A'') system is constructed using a permutation invariant polynomial neural network method. In ab initio calculations, the MRCI-F12 method with the AVTZ basis set is used. Furthermore, the dynamics calculations of the S+ + H2(v = 0-3, j = 0) → SH+ + H reaction are carried out based on the new PES. The reaction probabilities and integral cross sections are compared with available theoretical calculations. Present values are in general good agreement with the previous theoretical studies. However, some discrepancies can still be found due to different PESs used in the calculation. Furthermore, the vibrational energy of the reactant molecule can significantly enhance the reactivity compared to the translational energy. The differential cross sections indicated that the reaction mechanism is changed from the "head-on" rebound mechanism to the tripping mechanism with the increasing number of initial vibrational excitation state.
Collapse
Affiliation(s)
- Ziliang Zhu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization and Key Laboratory for Structure and Environment Disaster Preventing of Agriculture Greenhouse, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.
| | - Aijie Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China
| | - Di He
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Wentao Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization and Key Laboratory for Structure and Environment Disaster Preventing of Agriculture Greenhouse, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.
| |
Collapse
|
6
|
Zhang L, Jiang B. State-to-state quantum dynamics of H2O/HOD scattering from Cu(111): Mode- and bond-selective vibrational energy transfer. J Chem Phys 2020; 153:214702. [DOI: 10.1063/5.0030490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Liang Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Zhu Z, Li L, Li Q, Teng B. Dynamics studies of O + + D 2reaction using the time-dependent wave packet method. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1619855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ziliang Zhu
- College of Physics, Qing dao University, Qing dao, People’s Republic of China
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, People’s Republic of China
| | - Li Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, People’s Republic of China
| | - Qiju Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, People’s Republic of China
| | - Bing Teng
- College of Physics, Qing dao University, Qing dao, People’s Republic of China
| |
Collapse
|
8
|
Li W, He D, Sun Z. Dynamics studies of the H + HBr reaction: Based on a new potential energy surface. J Chem Phys 2019; 151:185102. [PMID: 31731875 DOI: 10.1063/1.5124834] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The initial state specific quantum wave packet dynamics studies of the H + HBr (v0 = 0, j0 = 0-2) reaction were performed using a new global potential energy surface (PES) of the ground state of the BrH2 system for the collision energy ranging from 0.01 to 2.0 eV. The PES was constructed using the permutation invariant polynomial neural network method based on approximately 63 000 ab initio points, which were calculated by the multireference configuration interaction method with AVTZ and AVQZ basis sets. To improve the accuracy of the PES, Davidson's correction and spin-orbit coupling effects were considered in the ab initio calculation and the basis set was extrapolated to complete basis set limit. The new PES was compared with the previous ones and also the available experimental data, which suggests that the new PES is more accurate. The state-to-state quantum wave packet dynamics was carried out using the reactant-coordinate based approach. The reaction probabilities, integral and differential cross sections, rovibrational state distributions of product and rate constants, etc., were compared with the available theoretical and experimental studies. In general, the present work is in better agreement with the available experimental data. The quantum dynamics studies suggest that the rotational excitation of HBr has little effect on the reaction.
Collapse
Affiliation(s)
- Wentao Li
- Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Di He
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Zhigang Sun
- Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
Buren B, Yang Z, Chen M. Non-adiabatic state-to-state dynamic studies of Na(3p) + H2(v = 1, 2, 3; j = 0) → NaH + H reactions. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.03.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Xu J, Zhang Y, Han Y. Vibrational and rotational excitation studies of the reaction Au+ + H2 → AuH+ + H using the time-dependent wave packet approach. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Fu B, Zhang DH. Ab Initio Potential Energy Surfaces and Quantum Dynamics for Polyatomic Bimolecular Reactions. J Chem Theory Comput 2018; 14:2289-2303. [DOI: 10.1021/acs.jctc.8b00006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
12
|
Zhao B, Manthe U, Guo H. Fermi resonance controlled product branching in the H + HOD reaction. Phys Chem Chem Phys 2018; 20:17029-17037. [DOI: 10.1039/c8cp02279h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excitation of the first overtone of bending mode results in a significant enhancement in the HD + OH channel due to the 1 : 2 Fermi resonance between the fundamental OD stretch and the first overtone of the bend.
Collapse
Affiliation(s)
- Bin Zhao
- Theoretische Chemie
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Uwe Manthe
- Theoretische Chemie
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| |
Collapse
|
13
|
Li W, Yuan J, Yuan M, Zhang Y, Yao M, Sun Z. A new potential energy surface of the OH2+ system and state-to-state quantum dynamics studies of the O+ + H2 reaction. Phys Chem Chem Phys 2018; 20:1039-1050. [DOI: 10.1039/c7cp03676k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new global potential energy surface of the O+ + H2 system was constructed with neural network method, using about 63000 ab initio points, which were calculated by employing the multi-reference configuration interaction method with aug-cc-pVTZ and aug-cc-pVQZ basis sets.
Collapse
Affiliation(s)
- Wentao Li
- Department of College Foundation Education
- Bohai University
- Jinzhou 121000
- China
- Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics
| | - Jiuchuang Yuan
- Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Meiling Yuan
- Key Laboratory of Materials Modification by Beams of the Ministry of Education
- School of Physics and Optoelectronic Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Yong Zhang
- Department of Physics
- Tonghua Normal University
- Tonghua 134002
- China
| | - Minghai Yao
- Department of College Foundation Education
- Bohai University
- Jinzhou 121000
- China
| | - Zhigang Sun
- Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
14
|
Zhao B, Sun Z, Guo H. State-to-state mode specificity in H + DOH(νOH = 1) → HD + OH(ν2 = 0) reaction: vibrational non-adiabaticity or local-mode excitation? Phys Chem Chem Phys 2018; 20:191-198. [DOI: 10.1039/c7cp07199j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
State-of-the-art full dimensional state-to-state quantum dynamics reveal a startling observation in which the DOH(νOH = 1) molecule reacts with a H atom to produce a vibrationless OH product. This interesting observation is attributed to a small OD excited local-mode component in the reactant wavefunction.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| | - Zhigang Sun
- Center for Theoretical and Computational Chemistry
- and State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| |
Collapse
|
15
|
Zhao B, Guo H. State‐to‐state quantum reactive scattering in four‐atom systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Zhao
- Department of Chemistry and Chemical Biology University of New Mexico Albuquerque NM USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology University of New Mexico Albuquerque NM USA
| |
Collapse
|
16
|
Zhao B, Sun Z, Guo H. A reactant-coordinate-based approach to state-to-state differential cross sections for tetratomic reactions. J Chem Phys 2016; 145:184106. [DOI: 10.1063/1.4966966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bin Zhao
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
17
|
Zhao B, Sun Z, Guo H. State-to-state differential cross sections for D2 + OH → D + DOH reaction: Influence of vibrational excitation of OH reactant. J Chem Phys 2016; 145:134308. [DOI: 10.1063/1.4964322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bin Zhao
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics, and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
18
|
Xie C, Jiang B, Yang M, Guo H. State-to-State Mode Specificity in F + CHD3 → HF/DF + CD3/CHD2 Reaction. J Phys Chem A 2016; 120:6521-8. [DOI: 10.1021/acs.jpca.6b06450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Changjian Xie
- Department of Chemistry
and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Bin Jiang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in
Biological Systems, Wuhan Center for Magnetic Resonance, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hua Guo
- Department of Chemistry
and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|