1
|
Kafle TR, Zhang Y, Wang YY, Shi X, Li N, Sapkota R, Thurston J, You W, Gao S, Dong Q, Rossnagel K, Chen GF, Freericks J, Kapteyn HC, Murnane MM. Non-equilibrium states and interactions in the topological insulator and topological crystalline insulator phases of NaCd 4As 3. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2025; 12:014501. [PMID: 39935451 PMCID: PMC11811906 DOI: 10.1063/4.0000273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025]
Abstract
Topological materials are of great interest because they can support metallic edge or surface states that are robust against perturbations, with the potential for technological applications. Here, we experimentally explore the light-induced non-equilibrium properties of two distinct topological phases in NaCd4As3: a topological crystalline insulator (TCI) phase and a topological insulator (TI) phase. This material has surface states that are protected by mirror symmetry in the TCI phase at room temperature, while it undergoes a structural phase transition to a TI phase below 200 K. After exciting the TI phase by an ultrafast laser pulse, we observe a leading band edge shift of >150 meV that slowly builds up and reaches a maximum after ∼0.6 ps and that persists for ∼8 ps. The slow rise time of the excited electron population and electron temperature suggests that the electronic and structural orders are strongly coupled in this TI phase. It also suggests that the directly excited electronic states and the probed electronic states are weakly coupled. Both couplings are likely due to a partial relaxation of the lattice distortion, which is known to be associated with the TI phase. In contrast, no distinct excited state is observed in the TCI phase immediately or after photoexcitation, which we attribute to the low density of states and phase space available near the Fermi level. Our results show how ultrafast laser excitation can reveal the distinct excited states and interactions in phase-rich topological materials.
Collapse
Affiliation(s)
- Tika R Kafle
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Yingchao Zhang
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Yi-yan Wang
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, CAS, Beijing, China
| | - Xun Shi
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Na Li
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Richa Sapkota
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Jeremy Thurston
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Wenjing You
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Shunye Gao
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Qingxin Dong
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, CAS, Beijing, China
| | | | - Gen-Fu Chen
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, CAS, Beijing, China
| | - James Freericks
- Department of Physics, Georgetown University, Washington, DC 20057, USA
| | | | - Margaret M Murnane
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| |
Collapse
|
2
|
An D, Zhang S, Zhai X, Yang W, Wu R, Zhang H, Fan W, Wang W, Chen S, Cojocaru-Mirédin O, Zhang XM, Wuttig M, Yu Y. Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te. Nat Commun 2024; 15:3177. [PMID: 38609361 PMCID: PMC11014947 DOI: 10.1038/s41467-024-47578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Elemental Te is important for semiconductor applications including thermoelectric energy conversion. Introducing dopants such as As, Sb, and Bi has been proven critical for improving its thermoelectric performance. However, the remarkably low solubility of these elements in Te raises questions about the mechanism with which these dopants can improve the thermoelectric properties. Indeed, these dopants overwhelmingly form precipitates rather than dissolve in the Te lattice. To distinguish the role of doping and precipitation on the properties, we have developed a correlative method to locally determine the structure-property relationship for an individual matrix or precipitate. We reveal that the conspicuous enhancement of electrical conductivity and power factor of bulk Te stems from the dopant-induced metavalently bonded telluride precipitates. These precipitates form electrically beneficial interfaces with the Te matrix. A quantum-mechanical-derived map uncovers more candidates for advancing Te thermoelectrics. This unconventional doping scenario adds another recipe to the design options for thermoelectrics and opens interesting pathways for microstructure design.
Collapse
Affiliation(s)
- Decheng An
- College of Chemistry, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Senhao Zhang
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Xin Zhai
- School of Electronic Science & Engineering, Southeast University, 210096, Nanjing, China
| | - Wutao Yang
- College of Chemistry, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Riga Wu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Huaide Zhang
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Wenhao Fan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Instrumental Analysis Center, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Wenxian Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Instrumental Analysis Center, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Shaoping Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Instrumental Analysis Center, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Oana Cojocaru-Mirédin
- Department of Sustainable Systems Engineering (INATECH), Albert-Ludwigs-Universität Freiburg, 79110, Freiburg, Germany
| | - Xian-Ming Zhang
- College of Chemistry, Taiyuan University of Technology, 030024, Taiyuan, China.
- Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Instrumental Analysis Center, Taiyuan University of Technology, 030024, Taiyuan, China.
| | - Matthias Wuttig
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany.
- Peter Grünberg Institute (PGI 10), Forschungszentrum Jülich, 52428, Jülich, Germany.
| | - Yuan Yu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Sakamoto M, Hada M, Ota W, Uesugi F, Sato T. Localised surface plasmon resonance inducing cooperative Jahn-Teller effect for crystal phase-change in a nanocrystal. Nat Commun 2023; 14:4471. [PMID: 37524703 PMCID: PMC10390505 DOI: 10.1038/s41467-023-40153-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/14/2023] [Indexed: 08/02/2023] Open
Abstract
The Jahn-Teller effect, a phase transition phenomenon involving the spontaneous breakdown of symmetry in molecules and crystals, causes important physical and chemical changes that affect various fields of science. In this study, we discovered that localised surface plasmon resonance (LSPR) induced the cooperative Jahn-Teller effect in covellite CuS nanocrystals (NCs), causing metastable displacive ion movements. Electron diffraction measurements under photo illumination, ultrafast time-resolved electron diffraction analyses, and theoretical calculations of semiconductive plasmonic CuS NCs showed that metastable displacive ion movements due to the LSPR-induced cooperative Jahn-Teller effect delayed the relaxation of LSPR in the microsecond region. Furthermore, the displacive ion movements caused photo-switching of the conductivity in CuS NC films at room temperature (22 °C), such as in transparent variable resistance infrared sensors. This study pushes the limits of plasmonics from tentative control of collective oscillation to metastable crystal structure manipulation.
Collapse
Affiliation(s)
- Masanori Sakamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| | - Masaki Hada
- Tsukuba Research Center for Energy Materials Science (TREMS), Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan.
| | - Wataru Ota
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto, 606-8103, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Fumihiko Uesugi
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tohru Sato
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto, 606-8103, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
4
|
Saida Y, Shikata R, En-Ya K, Ohmura S, Nishina Y, Hada M. Development of a Multitimescale Time-Resolved Electron Diffraction Setup: Photoinduced Dynamics of Oxygen Radicals on Graphene Oxide. J Phys Chem A 2022; 126:6301-6308. [PMID: 36063425 DOI: 10.1021/acs.jpca.2c04075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We developed a multitimescale time-resolved electron diffraction setup by electrically synchronizing a nanosecond laser with our table-top picosecond time-resolved electron diffractometer. The setup covers the photoinduced structural dynamics of target materials at timescales ranging from picoseconds to submilliseconds. Using this setup, we sequentially observed the ultraviolet (UV) photoinduced bond dissociation, radical formation, and relaxation dynamics of the oxygen atoms in the epoxy functional group on the basal plane of graphene oxide (GO). The results show that oxygen radicals formed via UV photoexcitation on the basal plane of GO in several tens of picoseconds and then relaxed back to the initial state on the microsecond timescale. The results of first-principles calculations also support the formation of oxygen radicals in the excited state on an early timescale. These results are essential for the further discussion of the reactivities on the basal plane of GO, such as catalytic reactions and antibacterial and antiviral activities. The results also suggest that the multitimescale time-resolved electron diffraction system is a promising tool for laboratory-based molecular dynamics studies of materials and chemical systems.
Collapse
Affiliation(s)
- Yuri Saida
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Ryo Shikata
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Kaito En-Ya
- College of Engineering Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Satoshi Ohmura
- Faculty of Engineering, Hiroshima Institute of Technology, Hiroshima 731-5193, Japan
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama 700-8530, Japan
| | - Masaki Hada
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8573, Japan.,Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba 305-8573, Japan
| |
Collapse
|
5
|
Aseev SA, Mironov BN, Ryabov EA, Avilov AS, Girichev GV, Ischenko AA. Ultrafast Electron Microscopy: An Instrument of the XXI Century. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Tao X, Stuart BW, Wan K, Murray JW, Bilotti E, Assender HE. Static and Dynamic Postannealing Strategies for Roll-to-Roll Fabrication of DC Magnetron Sputtered Bismuth Telluride Thin Films onto Polymer Webs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10149-10160. [PMID: 33617241 DOI: 10.1021/acsami.1c00721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-throughput roll-to-roll processes are desirable to scale up the manufacture of flexible thermoelectric generators. While vacuum deposition onto a heated dynamic substrate presents a considerable engineering challenge, viable postdeposition in-line annealing processes are considered as an alternative to improve the functional performance of as-deposited films. The effect of infrared and electron-beam irradiations of 1 μm thick bismuth telluride thin films, produced by a vacuum roll-to-roll process for use as thermoelectric materials, was examined. A static vacuum oven and pulsed high-energy electron beam were also studied as control groups. All annealing strategies increased the crystallite size and decreased the Te content. Only the static vacuum oven treatment was shown to significantly improve the film's crystallinity. After 1 h annealing, the power factor improved by 400% (from 2.8 to 14 × 10-4 W/mK2), which, to the knowledge of the authors, is the highest reported thermoelectric performance of postannealed or hot-deposited Bi-Te films. As for in-line annealing, infrared and electron-beam post treatments improved the power factor by 146% (from 2.8 to 6.9 × 10-4 W/mK2) and 64% (from 2.8 to 4.6 × 10-4 W/mK2), respectively.
Collapse
Affiliation(s)
- Xudong Tao
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K
| | - Bryan W Stuart
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K
| | - Kening Wan
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - James W Murray
- Advanced Component Engineering Laboratory (ACEL), Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Emiliano Bilotti
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Hazel E Assender
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K
| |
Collapse
|
7
|
Xu H, Zhou J, Wang H, Li J. Giant Photonic Response of Mexican-Hat Topological Semiconductors for Mid-infrared to Terahertz Applications. J Phys Chem Lett 2020; 11:6119-6126. [PMID: 32634315 DOI: 10.1021/acs.jpclett.0c01552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mid-infrared (MIR), far-infrared (FIR), and terahertz (THz) frequencies are the least developed parts of the electromagnetic spectrum for applications. Traditional semiconductor technologies like laser diodes and photodetectors are successful in the visible light range but are still confronted with great challenges when extended into the MIR/FIR/THz range. In this paper, we demonstrate that topological insulators (TIs), especially those with Mexican-hat band structure (MHBS), provide a route for overcoming these challenges. The optical responses of MHBS TIs can be 1-2 orders of magnitude larger than that of normal semiconductors at the optical transition edge. We explore the databases of topological materials and discover a number of MHBS TIs whose bandgaps lie between 0.05 and 0.5 eV and possess giant gains (absorption coefficients) on the order of 104-105 cm-1 at the transition edge. These findings may significantly boost potential MIR/FIR/THz applications such as photon sources, detectors, ultrafast electro-optical devices, and quantum information technologies.
Collapse
Affiliation(s)
- Haowei Xu
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jian Zhou
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hua Wang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Yano K, Katsuki H, Yanagi H. Mode selective excitation of terahertz vibrations in single crystalline rubrene. J Chem Phys 2019; 150:054503. [PMID: 30736674 DOI: 10.1063/1.5068732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Organic molecular crystals have a variety of low frequency vibrational modes composed of intra- and inter-molecular oscillations. They are mixed intricately in the terahertz (THz) region. We are interested in the controllability of the vibrational energy distribution among such THz vibrational modes based on the femtosecond double-pulse excitation scheme. Single crystalline rubrene is prepared by physical vapor transport. The optical response of vibrational modes in the electric ground state of rubrene is detected by the ultrafast pump-probe reflectivity measurement at 90 K. Three oscillation modes at 3.20, 3.67, and 4.18 THz are detected, and we demonstrate selective enhancement and depletion of each mode by properly tuning the double-pulse delay. The amplitude of the selected vibrational mode is modulated between 0.149 and 1.87, where 1.0 corresponds to the amplitude excited with a single pump pulse. The double-pulse delay dependence of the observed vibrational amplitude is simulated based on the classical driven harmonic oscillator model, and the results reasonably reproduce our experimental signals. Such selective manipulation of the vibrational amplitude can be a potential tool to investigate the vibronic and electron-phonon couplings which plays an important role for the charge transport characteristics and various optoelectronic properties in organic molecular crystals.
Collapse
Affiliation(s)
- Keisuke Yano
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Hiroyuki Katsuki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Hisao Yanagi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| |
Collapse
|
9
|
Hada M, Saito S, Sato R, Miyata K, Hayashi Y, Shigeta Y, Onda K. Novel Techniques for Observing Structural Dynamics of Photoresponsive Liquid Crystals. J Vis Exp 2018. [PMID: 29912189 DOI: 10.3791/57612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We discuss in this article the experimental measurements of the molecules in liquid crystal (LC) phase using the time-resolved infrared (IR) vibrational spectroscopy and time-resolved electron diffraction. Liquid crystal phase is an important state of matter that exists between the solid and liquid phases and it is common in natural systems as well as in organic electronics. Liquid crystals are orientationally ordered but loosely packed, and therefore, the internal conformations and alignments of the molecular components of LCs can be modified by external stimuli. Although advanced time-resolved diffraction techniques have revealed picosecond-scale molecular dynamics of single crystals and polycrystals, direct observations of packing structures and ultrafast dynamics of soft materials have been hampered by blurry diffraction patterns. Here, we report time-resolved IR vibrational spectroscopy and electron diffractometry to acquire ultrafast snapshots of a columnar LC material bearing a photoactive core moiety. Differential-detection analyses of the combination of time-resolved IR vibrational spectroscopy and electron diffraction are powerful tools for characterizing structures and photoinduced dynamics of soft materials.
Collapse
Affiliation(s)
- Masaki Hada
- Graduate School of Natural Science and Technology, Okayama University;
| | | | - Ryuma Sato
- Center for Computational Sciences, University of Tsukuba
| | | | - Yasuhiko Hayashi
- Graduate School of Natural Science and Technology, Okayama University
| | | | - Ken Onda
- Graduate School of Science, Kyushu University;
| |
Collapse
|
10
|
Hada M, Norimatsu K, Tanaka SI, Keskin S, Tsuruta T, Igarashi K, Ishikawa T, Kayanuma Y, Miller RJD, Onda K, Sasagawa T, Koshihara SY, Nakamura KG. Bandgap modulation in photoexcited topological insulator Bi2Te3 via atomic displacements. J Chem Phys 2016; 145:024504. [PMID: 27421417 DOI: 10.1063/1.4955188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The atomic and electronic dynamics in the topological insulator (TI) Bi2Te3 under strong photoexcitation were characterized with time-resolved electron diffraction and time-resolved mid-infrared spectroscopy. Three-dimensional TIs characterized as bulk insulators with an electronic conduction surface band have shown a variety of exotic responses in terms of electronic transport when observed under conditions of applied pressure, magnetic field, or circularly polarized light. However, the atomic motions and their correlation between electronic systems in TIs under strong photoexcitation have not been explored. The artificial and transient modification of the electronic structures in TIs via photoinduced atomic motions represents a novel mechanism for providing a comparable level of bandgap control. The results of time-domain crystallography indicate that photoexcitation induces two-step atomic motions: first bismuth and then tellurium center-symmetric displacements. These atomic motions in Bi2Te3 trigger 10% bulk bandgap narrowing, which is consistent with the time-resolved mid-infrared spectroscopy results.
Collapse
Affiliation(s)
- Masaki Hada
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Katsura Norimatsu
- Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Sei Ichi Tanaka
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Sercan Keskin
- The Max Planck Institute for the Structure and Dynamics of Matter, The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg 22761, Germany
| | - Tetsuya Tsuruta
- Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Kyushiro Igarashi
- Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Tadahiko Ishikawa
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Yosuke Kayanuma
- Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - R J Dwayne Miller
- The Max Planck Institute for the Structure and Dynamics of Matter, The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg 22761, Germany
| | - Ken Onda
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Takao Sasagawa
- Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Shin-Ya Koshihara
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Kazutaka G Nakamura
- Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|