1
|
Schaefer C, Lippmann M, Schindler C, Beukers M, Beijer N, Hitzemann M, van de Kamp B, Peters R, Knotter J, Zimmermann S. Pursuing drug laboratories: Analysis of drug precursors with High Kinetic Energy Ion Mobility Spectrometry. Forensic Sci Int 2024; 363:112196. [PMID: 39151243 DOI: 10.1016/j.forsciint.2024.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS) is a technique for rapid and reliable detection of trace compounds down to ppbV-levels within one second. Compared to classical IMS operating at ambient pressure and providing the ion mobility at low electric fields, HiKE-IMS can also provide the analyte-specific field dependence of the ion mobility and a fragmentation pattern at high reduced electric field strengths. The additional information about the analyte obtained by varying the reduced electric field strength can contribute to reliable detection. Furthermore, the reduced number of ion-molecule reactions at the low operating pressure of 10 - 40 mbar and the shorter reaction times reduce the impact of competing ion-molecule reactions that can cause false negatives. In this work, we employ HiKE-IMS for the analysis of phenyl-2-propanone (P2P) and other precursor chemicals used for synthesis of methamphetamine and amphetamine. The results show that the precursor chemicals exhibit different behavior in HiKE-IMS. Some precursors form a single significant ion species, while others readily form a fragmentation pattern. Nevertheless, all drug precursors can be distinguished from each other, from the reactant ions and from interfering compounds. In particular, the field-dependent ion mobility as an additional separation dimension aids identification, potentially reducing the number of false positive alarms in field applications. Furthermore, the analysis of a seized illicit P2P sample shows that even low levels of P2P can be detected despite the complex background present in the headspace of real samples.
Collapse
Affiliation(s)
- Christoph Schaefer
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, Hannover 30167, Germany.
| | - Martin Lippmann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, Hannover 30167, Germany
| | - Clara Schindler
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, Hannover 30167, Germany
| | - Michiel Beukers
- Research Group Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H Tromplaan 28, Enschede 7513AB, the Netherlands; Knowledge Centre of Digitalization, Intelligence and Technology, Police Academy of the Netherlands, Arnhemseweg 348, Apeldoorn 7334AC, the Netherlands
| | - Niels Beijer
- Research Group Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H Tromplaan 28, Enschede 7513AB, the Netherlands; Knowledge Centre of Digitalization, Intelligence and Technology, Police Academy of the Netherlands, Arnhemseweg 348, Apeldoorn 7334AC, the Netherlands
| | - Moritz Hitzemann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, Hannover 30167, Germany
| | - Ben van de Kamp
- Research Group Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H Tromplaan 28, Enschede 7513AB, the Netherlands; Knowledge Centre of Digitalization, Intelligence and Technology, Police Academy of the Netherlands, Arnhemseweg 348, Apeldoorn 7334AC, the Netherlands
| | - Ruud Peters
- Research Group Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H Tromplaan 28, Enschede 7513AB, the Netherlands; Knowledge Centre of Digitalization, Intelligence and Technology, Police Academy of the Netherlands, Arnhemseweg 348, Apeldoorn 7334AC, the Netherlands
| | - Jaap Knotter
- Research Group Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H Tromplaan 28, Enschede 7513AB, the Netherlands; Knowledge Centre of Digitalization, Intelligence and Technology, Police Academy of the Netherlands, Arnhemseweg 348, Apeldoorn 7334AC, the Netherlands
| | - Stefan Zimmermann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, Hannover 30167, Germany
| |
Collapse
|
2
|
Schaefer C, Allers M, Hitzemann M, Nitschke A, Kobelt T, Mörtel M, Schröder S, Ficks A, Zimmermann S. Reliable Detection of Chemical Warfare Agents Using High Kinetic Energy Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2008-2019. [PMID: 39013159 PMCID: PMC11311216 DOI: 10.1021/jasms.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) ionize and separate ions at reduced pressures of 10-40 mbar and over a wide range of reduced electric field strengths E/N of up to 120 Td. Their reduced operating pressure is distinct from that of conventional drift tube ion mobility spectrometers that operate at ambient pressure for trace compound detection. High E/N can lead to a field-induced fragmentation pattern that provides more specific structural information about the analytes. In addition, operation at high E/N values adds the field dependence of ion mobility as an additional separation dimension to low-field ion mobility, making interfering compounds less likely to cause a false positive alarm. In this work, we study the chemical warfare agents tabun (GA), sarin (GB), soman (GD), cyclosarin (GF) and sulfur mustard (HD) in a HiKE-IMS at variable E/N in both the reaction and the drift region. The results show that varying E/N can lead to specific fragmentation patterns at high E/N values combined with molecular signals at low E/N. Compared to the operation at a single E/N value in the drift region, the variation of E/N in the drift region also provides the analyte-specific field dependence of ion mobility as additional information. The accumulated data establish a unique fingerprint for each analyte that allows for reliable detection of chemical warfare agents even in the presence of interfering compounds with similar low-field ion mobilities, thus reducing false positives.
Collapse
Affiliation(s)
- Christoph Schaefer
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| | - Maria Allers
- Bundeswehr
Research Institute for Protective Technologies and CBRN Protection, Humboldtstrasse 100, 29633 Munster, Germany
| | - Moritz Hitzemann
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| | - Alexander Nitschke
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| | - Tim Kobelt
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| | - Max Mörtel
- Bundeswehr
Research Institute for Protective Technologies and CBRN Protection, Humboldtstrasse 100, 29633 Munster, Germany
| | - Stefanie Schröder
- Bundeswehr
Research Institute for Protective Technologies and CBRN Protection, Humboldtstrasse 100, 29633 Munster, Germany
| | - Arne Ficks
- Bundeswehr
Research Institute for Protective Technologies and CBRN Protection, Humboldtstrasse 100, 29633 Munster, Germany
| | - Stefan Zimmermann
- Institute
of Electrical Engineering and Measurement Technology, Department of
Sensors and Measurement Technology, Leibniz
University Hannover, Appelstr. 9A, 30167 Hannover, Germany
| |
Collapse
|
3
|
Iwamoto K, Inoue G, Matsubara H. Structural analysis of C 8H 6˙ + fragment ion from quinoline using ion-mobility spectrometry/mass spectrometry. Phys Chem Chem Phys 2024; 26:17205-17212. [PMID: 38855902 DOI: 10.1039/d4cp01676a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
This study investigated the structures of fragment ions derived from the quinoline (C9H7N) radical cation using ion-mobility spectrometry and mass spectrometry. Ion mobility and mass analysis revealed that C8H6˙+ is the primary dissociation product resulting from the loss of HCN during collision-induced dissociation of the quinoline radical cation. The reduced mobility (K0) of the C8H6˙+ fragment product in helium gas was measured over a range of reduced electric fields (E/N = 20.8-27.4 Td) at room temperature. The experimental K0 values indicated that C8H6˙+ is a mixture of phenylacetylene and pentalene radical cations. Furthermore, quantum chemical calculations revealed two potential energy surfaces delineating the loss of HCN from the quinoline radical cation to form phenylacetylene radical cations.
Collapse
Affiliation(s)
- Kenichi Iwamoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan.
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan
| | - Genki Inoue
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Hiroshi Matsubara
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan.
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
4
|
Bohnhorst A, Zygmanowski A, Yin Y, Kirk AT, Zimmermann S. Highly Efficient Ion Manipulator for Tandem Ion Mobility Spectrometry: Exploring a Versatile Technique by a Study of Primary Alcohols. Anal Chem 2023; 95:7158-7169. [PMID: 37094083 PMCID: PMC10173250 DOI: 10.1021/acs.analchem.2c05483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
In this work, we present a tandem ion mobility spectrometer (IMS) utilizing a highly efficient ion manipulator allowing to store, manipulate, and analyze ions under high electric field strengths and controlled ion-neutral reactions at ambient conditions. The arrangement of tandem drift regions and an ion manipulator in a single drift tube allows a sequence of mobility selection of precursor ions, followed by storage and analysis, mobility separation, and detection of the resulting product ions. In this article, we present a journey exploring the capabilities of the present instrument by a study of eight different primary alcohols characterized at reduced electric field strengths E/N of up to 120 Td with a water vapor concentration ranging from 40 to 540 ppb. Under these conditions, protonated alcohol monomers up to a carbon number of nine could be dissociated, resulting in 18 different fragmented product ions in total. The fragmentation patterns revealed regularities, which can be used for assignment to the chemical class and improved classification of unknown substances. Furthermore, both the time spent in high electrical field strengths and the reaction time with water vapor can be tuned precisely, allowing the fragment distribution to be influenced. Thus, further information regarding the relations of the product ions can be gathered in a standalone drift tube IMS for the first time.
Collapse
Affiliation(s)
- Alexander Bohnhorst
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Hannover 30167, Germany
- ACKISION GmbH, Appelstr. 9A, Hannover 30167, Germany
| | - Anne Zygmanowski
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Hannover 30167, Germany
| | - Yu Yin
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Hannover 30167, Germany
| | - Ansgar T Kirk
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Hannover 30167, Germany
- ACKISION GmbH, Appelstr. 9A, Hannover 30167, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Hannover 30167, Germany
| |
Collapse
|
5
|
Naylor CN, Cabrera ER, Clowers BH. A Comparison of the Performance of Modular Standalone Do-It-Yourself Ion Mobility Spectrometry Systems. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:586-594. [PMID: 36916484 PMCID: PMC10454526 DOI: 10.1021/jasms.2c00308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As the spectrum of ion mobility spectrometry (IMS) applications expands and more experimental configurations are developed, identifying the correct platform for an experimental campaign becomes more challenging for researchers. Additionally, metrics that compare performance (Rp, for example) often have nuanced differences in definition between platforms that render direct comparisons difficult. Here we present a comparison of three do-it-yourself (DIY) drift tubes that are relatively low cost and easy to construct, where the performance of each is evaluated based on three different metrics: resolving power, the ideality of resolving powers, and accuracy/precision of K0 values. The standard PCBIMS design developed by Reinecke and Clowers (Reinecke, T.; Clowers, B. H. HardwareX 2018, 4, e00030) provided the highest resolving power (>90) and the highest ideality of resolving power ratios (>90% at best) of the three systems. However, the flexible tube (FlexIMS) construction as described by Smith et al. (Smith, B. L. Anal. Chem. 2020, 92 (13), 9104-9112) exhibited the highest degree of precision of K0 values (relative standard deviation of <0.42%). Depending on the application, the drift tube variants presented and evaluated here offer a low-cost alternative to commercial drift-tube systems with levels of performance that approach theoretical maxima.
Collapse
Affiliation(s)
- Cameron N. Naylor
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Elvin R. Cabrera
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
6
|
Naylor CN, Schaefer C, Kirk AT, Zimmermann S. The origin of isomerization of aniline revealed by high kinetic energy ion mobility spectrometry (HiKE-IMS). Phys Chem Chem Phys 2023; 25:1139-1152. [PMID: 36515135 DOI: 10.1039/d2cp01994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although aniline is a relatively simple small molecule, the origin of its two peaks observed in ion mobility spectrometry (IMS) has remained under debate for at least 30 years. First hypothesized as a difference in protonation site (amine vs. benzene ring), each ion mobility peak differs by one Dalton when coupled with mass spectrometry where the faster mobility peak is the molecular ion peak, and the slower mobility peak is protonated. To complicate the deconvolution of structures, some previous literature shows the peaks as unresolved and thus proposes these species exist in equilibrium. In this work, we show that when measured with high kinetic energy ion mobility spectrometry (HiKE-IMS), the two peaks observed in spectra of both aniline and all n-fluoroanilines are fully separated (chromatographic resolution from 2-7, Rp > 110) and therefore not in equilibrium. The HiKE-IMS is capable of changing ionization conditions independently of drift region conditions, and our results agree with previous literature showing that ionization source settings (including possible fragmentation at this stage) are the only influence determining the speciation of the two aniline peaks. Finally, when the drift and reactant gas are changed to nitrogen, a third peak appears at high E/N for 2-fluoroaniline and 4-fluoroaniline for the first time in reported literature. As observed by HiKE-IMS-MS, the new third peak is also protonated showing that the para-protonated aniline and resulting fragment ion, molecular ion aniline, can be fully separated in the mobility domain for the first time. The appearance of the third peak is only possible due to the increased separation of the other two peaks within the HiKE-IMS.
Collapse
Affiliation(s)
- Cameron N Naylor
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, 30167 Hannover, Germany.
| | - Christoph Schaefer
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, 30167 Hannover, Germany.
| | - Ansgar T Kirk
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, 30167 Hannover, Germany.
| | - Stefan Zimmermann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, 30167 Hannover, Germany.
| |
Collapse
|
7
|
Cämmerer M, Mayer T, Borsdorf H. Drift Time Corrections Based on a Practical Measurement of the Depletion Zone to Allow Accurate and Reproducible Determination of the Reduced Mobility of Ions in DT-IMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:74-82. [PMID: 34851630 DOI: 10.1021/jasms.1c00272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reduced mobility of an ion is a key parameter for identifying ions and comparing spectra in drift time ion mobility spectrometry. As the resolution of spectrometers improves, accurate determination of the reduced mobility is increasingly important. The drift time, used to calculate the reduced mobility, is affected by the ion gate, and this effect has previously been compensated with a linear correction. These corrections, however, do not allow for changes in the distances that the ions must drift to reach the detector caused by the electric field around the ion gate. As these corrections are a linear correction, nonlinearity in the influence of the ion gate may also lead to greater errors. By measuring the length of the depletion zone in front of the ion gate the extra distance traveled by the ions may be corrected for. This measurement also provides the boundary conditions for when a correction to the drift time may be accurately applied. This work shows that the length of the depletion zone can be experimentally measured and that it is consistent for a particular geometry of ion gate.
Collapse
Affiliation(s)
- Malcolm Cämmerer
- Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thomas Mayer
- Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Helko Borsdorf
- Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
8
|
Naylor CN, Reinecke T, Ridgeway ME, Park MA, Clowers BH. Implications of Blanc's Law for Use in Trapped Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2241-2250. [PMID: 34279925 DOI: 10.1021/jasms.1c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Blanc's Law has served as a way to predict the mobilities of ions in mixed drift gases for over 100 years yet has remained largely unexplored using newer ion mobility spectrometry (IMS) configurations, including traveling wave and trapped IMS (TIMS) systems. Here, we evaluate a drift-tube IMS (DTIMS) and compare it to a similar set of experiments performed in TIMS. We found that Blanc's Law can be applied in a DTIMS to determine the mobility of an analyte in the minor gas component of a ternary mixed drift gas system within 2% error. Additionally, the calibration procedure for TIMS to convert elution voltages into a mobility value corrects for significant deviations (>4%) from Blanc's Law in the elution voltage domain. For the range of gas identities probed in this effort, up to an 11% error in calibrated mobilities was observed when using a gas mixture in the TIMS that differed from the gas used for the reference mobility. However, when the gas mixture within the TIMS was the same as the respective calibrant mobilities, calibration errors within the TIMS were as low as 0.01%. Interestingly, when probing the behavior of ions with argon-containing mixtures within the TIMS, the current accepted paradigm of elution voltage being proportional to inverse mobilities in TIMS calibrations procedures was shown to deviate substantially from the trends observed with DTIMS measurements. With this initial effort, foundations for future mixed drift gas measurements in TIMS are set for expanded analyte classes and larger molecules.
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Tobias Reinecke
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Mark E Ridgeway
- Bruker Daltonics, Inc., Billerica, Massachusetts 01821, United States
| | - Melvin A Park
- Bruker Daltonics, Inc., Billerica, Massachusetts 01821, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
9
|
Allers M, Kirk AT, Schaefer C, Erdogdu D, Wissdorf W, Benter T, Zimmermann S. Field-Dependent Reduced Ion Mobilities of Positive and Negative Ions in Air and Nitrogen in High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2191-2201. [PMID: 32865400 DOI: 10.1021/jasms.0c00280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS), ions are formed in a reaction region and separated in a drift region, which is similar to classical drift tube ion mobility spectrometers (IMS) operated at ambient pressure. However, in contrast to the latter, the HiKE-IMS is operated at a decreased background pressure of 10-40 mbar and achieves high reduced electric field strengths of up to 120 Td in both the reaction and the drift region. Thus, the HiKE-IMS allows insights into the chemical kinetics of ion-bound water cluster systems at effective ion temperatures exceeding 1000 K, although it is operated at the low absolute temperature of 45 °C. In this work, a HiKE-IMS with a high resolving power of RP = 140 is used to study the dependence of reduced ion mobilities on the drift gas humidity and the effective ion temperature for the positive reactant ions H3O+(H2O)n, O2+(H2O)n, NO+(H2O)n, NO2+(H2O)n, and NH4+(H2O)n, as well as the negative reactant ions O2-(H2O)n, O3-(H2O)n, CO3-(H2O)n, HCO3-(H2O)n, and NO2-(H2O)n. By varying the reduced electric field strength in the drift region, cluster transitions are observed in the ion mobility spectra. This is demonstrated for the cluster systems H3O+(H2O)n and NO+(H2O)n.
Collapse
Affiliation(s)
- Maria Allers
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstraße 9a, 30167 Hannover, Germany
| | - Ansgar T Kirk
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstraße 9a, 30167 Hannover, Germany
| | - Christoph Schaefer
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstraße 9a, 30167 Hannover, Germany
| | - Duygu Erdogdu
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| | - Walter Wissdorf
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| | - Thorsten Benter
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| | - Stefan Zimmermann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstraße 9a, 30167 Hannover, Germany
| |
Collapse
|
10
|
Naylor CN, Ridgeway ME, Park MA, Clowers BH. Evaluation of Trapped Ion Mobility Spectrometry Source Conditions Using Benzylammonium Thermometer Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1593-1602. [PMID: 32510214 DOI: 10.1021/jasms.0c00151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A key aspect of reduced pressure ion mobility spectrometry (IMS) experiments is to identify experimental conditions that minimize the role of collisional energy transfer that allows for assessing effective ion-neutral collision cross sections of metabolites, peptides, and proteins in "native-like" or compact states. Across two separate experimental campaigns using a prototype trapped ion mobility spectrometer (TIMS) coupled to a time-of-flight mass spectrometer, we present independent findings that support the results recently published by Morsa et al. using a different set of thermometer ions (Morsa et al. Anal. Chem. 2020, 92 (6), 4573-4582). First, using five para-substituted benzylammonium ions, we conducted survival yield experiments to assess ion internal energy across different experimental settings. Results from the present set of experiments illustrate that greater ion heating occurs at lower pressures and higher voltage settings applied to the TIMS. At the "softest" settings where the benzylammonium thermometer ions have an effective average energy of 1.73 eV, we observe the majority of bradykinin in the compact state. Under more extreme operating conditions where the energy of the benzylammonium ions varies from 1.83 to 1.86 eV, the bradykinin transitions from the compact to the elongated state. In addition to independently confirming the findings of Morsa et al., we also report the mobilities for the benzylammonium parent and fragment ions using the tandem drift-tube-TIMS calibration procedure described by Naylor et al. ( J. Am. Soc. Mass Spectrom. 2019, 30 (10), 2152-2162).
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Mark E Ridgeway
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
11
|
Smith BL, Boisdon C, Young IS, Praneenararat T, Vilaivan T, Maher S. Flexible Drift Tube for High Resolution Ion Mobility Spectrometry (Flex-DT-IMS). Anal Chem 2020; 92:9104-9112. [PMID: 32479060 PMCID: PMC7467419 DOI: 10.1021/acs.analchem.0c01357] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
This paper describes,
in detail, the development of a novel, low-cost,
and flexible drift tube (DT) along with an associated ion mobility
spectrometer system. The DT is constructed from a flexible printed
circuit board (PCB), with a bespoke “dog-leg” track
design, that can be rolled up for ease of assembly. This approach
incorporates a shielding layer, as part of the flexible PCB design,
and represents the minimum dimensional footprint conceivable for a
DT. The low thermal mass of the polyimide substrate and overlapping
electrodes, as afforded by the dog-leg design, allow for efficient
heat management and high field linearity within the tube–achieved
from a single PCB. This is further enhanced by a novel double-glazing
configuration which provides a simple and effective means for gas
management, minimizing thermal variation within the assembly. Herein,
we provide a full experimental characterization of the flexible DT
ion mobility spectrometer (Flex-DT-IMS) with corresponding electrodynamic
(Simion 8.1) and fluid dynamic (SolidWorks) simulations. The Flex-DT-IMS
is shown to have a resolution >80 and a detection limit of low
nanograms
for the analysis of common explosives (RDX, PETN, HMX, and TNT).
Collapse
Affiliation(s)
- Barry L Smith
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Cedric Boisdon
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Iain S Young
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 3BX, U.K
| | - Thanit Praneenararat
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Simon Maher
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| |
Collapse
|
12
|
Hauck BC, Harden CS, McHugh VM. Accurate Evaluation of Potential Calibration Standards for Ion Mobility Spectrometry. Anal Chem 2020; 92:6158-6165. [PMID: 32233428 DOI: 10.1021/acs.analchem.0c00859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ion mobility spectrometry (IMS)-based instruments have historically been accurate to, at best, ±2% of the reduced ion mobility (K0) value of the chemical of interest. Fielded IMS-based detectors that are in use for hazardous and illicit substance detection are subject to false-positive alarms because of this inaccuracy and the resulting wide alarm windows, which are required to maintain a high rate of true-positive alarms. To reduce false-positive alarm rates and improve the accuracy of any IMS-based instrument, accurate K0 values of an ion mobility reference standard need to be used for ion mobility scale calibration. However, a suitable calibrant has yet to be accurately analyzed and agreed upon by the IMS community. In this study, we have chosen five potential IMS calibrants on the basis of their rating against seven criteria for suitable standards and analyzed them as a function of drift gas temperature and humidity using an accurate ion mobility instrument. Recommendations are made herein for each potential calibrant's suitability as a standard for the wider IMS community.
Collapse
Affiliation(s)
- Brian C Hauck
- Science and Technology Corporation (STC) - Support to CCDC CBC, 111 C Bata Blvd., Belcamp, Maryland 21017, United States
| | - Charles S Harden
- Science and Technology Corporation (STC) - Support to CCDC CBC, 111 C Bata Blvd., Belcamp, Maryland 21017, United States
| | - Vincent M McHugh
- U.S. Army Combat Capabilities Development Command Chemical Biological Center (CCDC CBC), Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
13
|
Naylor CN, Reinecke T, Clowers BH. Assessing the Impact of Drift Gas Polarizability in Polyatomic Ion Mobility Experiments. Anal Chem 2020; 92:4226-4234. [DOI: 10.1021/acs.analchem.9b04468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cameron N. Naylor
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Tobias Reinecke
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
14
|
Attah IK, Nagy G, Garimella SVB, Norheim RV, Anderson GA, Ibrahim YM, Smith RD. Traveling-Wave-Based Electrodynamic Switch for Concurrent Dual-Polarity Ion Manipulations in Structures for Lossless Ion Manipulations. Anal Chem 2019; 91:14712-14718. [PMID: 31621288 PMCID: PMC7239325 DOI: 10.1021/acs.analchem.9b03987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe the development of a dual-polarity traveling-wave (TW) structures for lossless ion manipulations (SLIM) ion mobility spectrometry (IMS) device capable of switching both positive and negative ions that are traveling simultaneously along the same path to different regions of the SLIM. Through simulations, the routing efficiency of the SLIM TW switch was compared to a SLIM direct-current-based (DC) switch developed previously for IMS-MS. We also report on the initial experimental evaluation of a dual-polarity SLIM platform, which uses the TW-based ion switch to achieve higher resolution multipass serpentine ultralong path with extended routing (SUPER) IMS separations. Overall, these results show that the dual-polarity TW switch is not only as effective as DC switching in terms of routing efficiency but also is agnostic to the polarity of the ions being routed.
Collapse
Affiliation(s)
- Isaac K. Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sandilya V. B. Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Randolph V. Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gordon A. Anderson
- GAA Custom Engineering, LLC, Benton City, Washington 99320, United States
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
15
|
Naylor CN, Reinecke T, Ridgeway ME, Park MA, Clowers BH. Validation of Calibration Parameters for Trapped Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2152-2162. [PMID: 31392697 DOI: 10.1007/s13361-019-02289-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Using contemporary theory for ion mobility spectrometry (IMS), gas-phase ion mobilities within a trapped ion mobility-mass spectrometer (TIMS) are not easily deduced using first principle equations due to non-linear pressure changes and consequently variations in E/N. It is for this reason that prior literature values have traditionally been used for TIMS calibration. Additionally, given that verified mobility standards currently do not exist and the that the exact conditions used to measure reported literature values may not always represent the environment within the TIMS, a direct approach to validating the behavior of the TIMS system is warranted. A calibration procedure is presented where an ambient pressure, ambient temperature, two-gate, printed circuit board drift-tube IMS (PCBIMS) is coupled to the front of a TIMS allowing reduced mobilities to be directly measured on the same instrument as the TIMS. These measured mobilities were used to evaluate the TIMS calibration procedure which correlates reduced mobility and TIMS elution voltages with literature values. When using the measured PCBIMS-reduced mobilities of tetraalkyl ammonium salts and tune mix for TIMS calibration of the alkyltrimethyl ammonium salts, the percent error is less than 1% as compared with using the reported literature K0 values where the percent error approaches 5%. This method provides a way to obtain accurate reference mobilities for ion mobility techniques that require a calibration step (i.e., TIMS and TWAVE).
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Tobias Reinecke
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | | | | | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
16
|
Mistek E, Fikiet MA, Khandasammy SR, Lednev IK. Toward Locard's Exchange Principle: Recent Developments in Forensic Trace Evidence Analysis. Anal Chem 2018; 91:637-654. [PMID: 30404441 DOI: 10.1021/acs.analchem.8b04704] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ewelina Mistek
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Marisia A Fikiet
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Shelby R Khandasammy
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Igor K Lednev
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| |
Collapse
|
17
|
Iwamoto K, Fujimoto Y, Nakanishi T. Development of an ion mobility spectrometer using radio-frequency electric field. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:115101. [PMID: 30501352 DOI: 10.1063/1.5050440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/13/2018] [Indexed: 06/09/2023]
Abstract
This paper describes the development of a new ion mobility spectrometer (IMS) using the radio-frequency (RF) electric field. The proposed IMS has high ion transmission efficiency. Seven connected IMS devices, in which the RF and DC electric fields are created by separate electrodes, are constructed. The ions are confined by the RF electric field and drifted by the DC electric field. The electrodes in each IMS device include short quadrupole electrodes and segmented vane electrodes. The uniform electric field in the IMS is verified by simulated results obtained using SIMION. To measure the exact value of reduced mobility K 0 at low Td (1 Td = 10-17 V cm2), two ion gates are installed in the IMS. By installing the ion gates at suitable positions for eliminating the effect of gas flow, the exact ion velocity through the IMS can be measured. The K 0 values of O2 + and C6H6 + ions are measured as a function of Td. In addition, the K 0 of CH3OCH2 + fragment ions is measured. These K 0 measurement results are consistent with previous results obtained using electrostatic drift tube apparatus. In summary, as our IMS can measure K 0 under low Td conditions, it can be used to better understand the structure of small molecular or fragment ions.
Collapse
Affiliation(s)
- Kenichi Iwamoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yusuke Fujimoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan
| | - Toshiki Nakanishi
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
18
|
Hauck BC, Harden CS, McHugh VM. Current status and need for standards in ion mobility spectrometry. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s12127-018-0239-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH. High Accuracy Ion Mobility Spectrometry for Instrument Calibration. Anal Chem 2018. [DOI: 10.1021/acs.analchem.7b04987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Brian C. Hauck
- Department of Chemistry, Washington State University, 305 Fulmer Hall, Pullman, Washington 99164, United States
| | - William F. Siems
- Department of Chemistry, Washington State University, 305 Fulmer Hall, Pullman, Washington 99164, United States
| | - Charles S. Harden
- LEIDOS—U.S. Army Edgewood Chemical Biological Center Operations, P.O. Box 68, Gunpowder, Maryland 21010, United States
| | - Vincent M. McHugh
- U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Herbert H. Hill
- Department of Chemistry, Washington State University, 305 Fulmer Hall, Pullman, Washington 99164, United States
| |
Collapse
|
20
|
Fundamentals of ion mobility spectrometry. Curr Opin Chem Biol 2018; 42:51-59. [DOI: 10.1016/j.cbpa.2017.10.022] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
|
21
|
Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH. Construction and evaluation of a hermetically sealed accurate ion mobility instrument. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s12127-017-0224-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Fernandez-Maestre R. Note: Buffer gas temperature inhomogeneities and design of drift-tube ion mobility spectrometers: Warnings for real-world applications by non-specialists. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:096104. [PMID: 28964182 DOI: 10.1063/1.5001845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ion mobility spectrometry (IMS) separates gas phase ions moving under an electric field according to their size-to-charge ratio. IMS is the method of choice to detect illegal drugs and explosives in customs and airports making accurate determination of reduced ion mobilities (K0) important for national security. An ion mobility spectrometer with electrospray ionization coupled to a quadrupole mass spectrometer was used to study uncertainties in buffer gas temperatures during mobility experiments. Differences up to 16°C were found in the buffer gas temperatures in different regions of the drift tube and up to 42°C between the buffer gas and the drift tube temperatures. The drift tube temperature is used as an approximation to the buffer gas temperature for the calculation of K0 because the buffer gas temperature is hard to measure. This is leading to uncertainties in the determination of K0 values. Inaccurate determination of K0 values yields false positives that delay the cargo and passengers in customs and airports. Therefore, recommendations are issued for building mobility tubes to assure a homogeneous temperature of the buffer gas. Because the temperature and other instrumental parameters are difficult to measure in IMS, chemical standards should always be used when calculating K0. The difference of 42°C between the drift tube and buffer gas temperatures found in these experiments produces a 10.5% error in the calculation of K0. This large inaccuracy in K0 shows the importance of a correct temperature measurement in IMS.
Collapse
Affiliation(s)
- R Fernandez-Maestre
- Programa de Química, Universidad de Cartagena, Campus de San Pablo, Cartagena, Colombia
| |
Collapse
|
23
|
Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH. Determination of E/N Influence on K 0 Values within the Low Field Region of Ion Mobility Spectrometry. J Phys Chem A 2017; 121:2274-2281. [PMID: 28252301 DOI: 10.1021/acs.jpca.6b12331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The established theory of ion motion within weak electric fields predicts that reduced ion mobility (K0) remains constant as a function of the ratio of electric field strength to drift gas number density (E/N). However, upon increasing the accuracy and precision of K0 value measurements during a previous study, a new relationship was seen in which the K0 values of ions decreased as a function of increasing E/N at field strengths below 4 Td. Here the effect of E/N on the K0 value of an ion has been investigated in order to validate the reality of the phenomenon and determine its cause. The pertinent measurements of voltage and drift time were verified in order to ensure the authenticity of the trend and that it was not a result of a systematic error in parametric measurements. The trend was also replicated on a separate ion mobility spectrometer drift tube in order to further validate its authenticity. As a result, the theory of ion motion within weak electric fields should be revised to reflect the behavior seen here.
Collapse
Affiliation(s)
- Brian C Hauck
- Department of Chemistry, Washington State University , 305 Fulmer Hall, Pullman, Washington 99164, United States
| | - William F Siems
- Department of Chemistry, Washington State University , 305 Fulmer Hall, Pullman, Washington 99164, United States
| | - Charles S Harden
- LEIDOS-U.S. Army Edgewood Chemical Biological Center Operations , P.O. Box 68, Gunpowder, Maryland 21010, United States
| | - Vincent M McHugh
- U.S. Army Edgewood Chemical Biological Center , Aberdeen Proving Ground, Maryland 21010, United States
| | - Herbert H Hill
- Department of Chemistry, Washington State University , 305 Fulmer Hall, Pullman, Washington 99164, United States
| |
Collapse
|
24
|
Kirk AT, Raddatz CR, Zimmermann S. Separation of Isotopologues in Ultra-High-Resolution Ion Mobility Spectrometry. Anal Chem 2017; 89:1509-1515. [DOI: 10.1021/acs.analchem.6b03300] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ansgar T. Kirk
- Leibniz Universität Hannover, Institute of Electrical Engineering
and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Christian-Robert Raddatz
- Leibniz Universität Hannover, Institute of Electrical Engineering
and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Stefan Zimmermann
- Leibniz Universität Hannover, Institute of Electrical Engineering
and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| |
Collapse
|