1
|
Choi S, Choi WI, Lee JS, Lee CH, Balamurugan M, Schwarz AD, Choi ZS, Randriamahazaka H, Nam KT. A Reflection on Sustainable Anode Materials for Electrochemical Chloride Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300429. [PMID: 36897816 DOI: 10.1002/adma.202300429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Chloride oxidation is a key industrial electrochemical process in chlorine-based chemical production and water treatment. Over the past few decades, dimensionally stable anodes (DSAs) consisting of RuO2 - and IrO2 -based mixed-metal oxides have been successfully commercialized in the electrochemical chloride oxidation industry. For a sustainable supply of anode materials, considerable efforts both from the scientific and industrial aspects for developing earth-abundant-metal-based electrocatalysts have been made. This review first describes the history of commercial DSA fabrication and strategies to improve their efficiency and stability. Important features related to the electrocatalytic performance for chloride oxidation and reaction mechanism are then summarized. From the perspective of sustainability, recent progress in the design and fabrication of noble-metal-free anode materials, as well as methods for evaluating the industrialization of novel electrocatalysts, are highlighted. Finally, future directions for developing highly efficient and stable electrocatalysts for industrial chloride oxidation are proposed.
Collapse
Affiliation(s)
- Seungwoo Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Soft Foundry, Seoul National University, Seoul, 08826, South Korea
| | - Won Il Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Seo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Chang Hyun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Andrew D Schwarz
- Milton Hill Business and Technology Centre, Infineum, Abingdon, OX13 6BB, UK
| | - Zung Sun Choi
- Infineum Singapore LLP, Singapore, 098632, Singapore
| | | | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Soft Foundry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
2
|
Yang J, Li WH, Tang HT, Pan YM, Wang D, Li Y. CO 2-mediated organocatalytic chlorine evolution under industrial conditions. Nature 2023; 617:519-523. [PMID: 37198309 DOI: 10.1038/s41586-023-05886-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 02/24/2023] [Indexed: 05/19/2023]
Abstract
During the chlor-alkali process, in operation since the nineteenth century, electrolysis of sodium chloride solutions generates chlorine and sodium hydroxide that are both important for chemical manufacturing1-4. As the process is very energy intensive, with 4% of globally produced electricity (about 150 TWh) going to the chlor-alkali industry5-8, even modest efficiency improvements can deliver substantial cost and energy savings. A particular focus in this regard is the demanding chlorine evolution reaction, for which the state-of-the-art electrocatalyst is still the dimensionally stable anode developed decades ago9-11. New catalysts for the chlorine evolution reaction have been reported12,13, but they still mainly consist of noble metal14-18. Here we show that an organocatalyst with an amide functional group enables the chlorine evolution reaction; and that in the presence of CO2, it achieves a current density of 10 kA m-2 and a selectivity of 99.6% at an overpotential of only 89 mV and thus rivals the dimensionally stable anode. We find that reversible binding of CO2 to the amide nitrogen facilitates formation of a radical species that plays a critical role in Cl2 generation, and that might also prove useful in the context of Cl- batteries and organic synthesis19-21. Although organocatalysts are typically not considered promising for demanding electrochemical applications, this work demonstrates their broader potential and the opportunities they offer for developing industrially relevant new processes and exploring new electrochemical mechanisms.
Collapse
Affiliation(s)
- Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Wen-Hao Li
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Lim T, Jung GY, Kim JH, Park SO, Park J, Kim YT, Kang SJ, Jeong HY, Kwak SK, Joo SH. Atomically dispersed Pt-N 4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction. Nat Commun 2020; 11:412. [PMID: 31964881 PMCID: PMC6972710 DOI: 10.1038/s41467-019-14272-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/23/2019] [Indexed: 11/23/2022] Open
Abstract
Chlorine evolution reaction (CER) is a critical anode reaction in chlor-alkali electrolysis. Although precious metal-based mixed metal oxides (MMOs) have been widely used as CER catalysts, they suffer from the concomitant generation of oxygen during the CER. Herein, we demonstrate that atomically dispersed Pt-N4 sites doped on a carbon nanotube (Pt1/CNT) can catalyse the CER with excellent activity and selectivity. The Pt1/CNT catalyst shows superior CER activity to a Pt nanoparticle-based catalyst and a commercial Ru/Ir-based MMO catalyst. Notably, Pt1/CNT exhibits near 100% CER selectivity even in acidic media, with low Cl- concentrations (0.1 M), as well as in neutral media, whereas the MMO catalyst shows substantially lower CER selectivity. In situ electrochemical X-ray absorption spectroscopy reveals the direct adsorption of Cl- on Pt-N4 sites during the CER. Density functional theory calculations suggest the PtN4C12 site as the most plausible active site structure for the CER.
Collapse
Affiliation(s)
- Taejung Lim
- Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Gwan Yeong Jung
- Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jae Hyung Kim
- Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Sung O Park
- Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jaehyun Park
- Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Yong-Tae Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Seok Ju Kang
- Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| | - Sang Hoon Joo
- Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|