1
|
Kubincová A, Riniker S, Hünenberger PH. Solvent-scaling as an alternative to coarse-graining in adaptive-resolution simulations: The adaptive solvent-scaling (AdSoS) scheme. J Chem Phys 2021; 155:094107. [PMID: 34496576 DOI: 10.1063/5.0057384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new approach termed Adaptive Solvent-Scaling (AdSoS) is introduced for performing simulations of a solute embedded in a fine-grained (FG) solvent region itself surrounded by a coarse-grained (CG) solvent region, with a continuous FG ↔ CG switching of the solvent resolution across a buffer layer. Instead of relying on a distinct CG solvent model, the AdSoS scheme is based on CG models defined by a dimensional scaling of the FG solvent by a factor s, accompanied by an s-dependent modulation of the atomic masses and interaction parameters. The latter changes are designed to achieve an isomorphism between the dynamics of the FG and CG models, and to preserve the dispersive and dielectric solvation properties of the solvent with respect to a solute at FG resolution. This scaling approach offers a number of advantages compared to traditional coarse-graining: (i) the CG parameters are immediately related to those of the FG model (no need to parameterize a distinct CG model); (ii) nearly ideal mixing is expected for CG variants with similar s-values (ideal mixing holding in the limit of identical s-values); (iii) the solvent relaxation timescales should be preserved (no dynamical acceleration typical for coarse-graining); (iv) the graining level NG (number of FG molecules represented by one CG molecule) can be chosen arbitrarily (in particular, NG = s3 is not necessarily an integer); and (v) in an adaptive-resolution scheme, this level can be varied continuously as a function of the position (without requiring a bundling mechanism), and this variation occurs at a constant number of particles per molecule (no occurrence of fractional degrees of freedom in the buffer layer). By construction, the AdSoS scheme minimizes the thermodynamic mismatch between the different regions of the adaptive-resolution system, leading to a nearly homogeneous scaled solvent density s3ρ. Residual density artifacts in and at the surface of the boundary layer can easily be corrected by means of a grid-based biasing potential constructed in a preliminary pure-solvent simulation. This article introduces the AdSoS scheme and provides an initial application to pure atomic liquids (no solute) with Lennard-Jones plus Coulomb interactions in a slab geometry.
Collapse
Affiliation(s)
- Alžbeta Kubincová
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
2
|
Cortes-Huerto R, Praprotnik M, Kremer K, Delle Site L. From adaptive resolution to molecular dynamics of open systems. THE EUROPEAN PHYSICAL JOURNAL. B 2021; 94:189. [PMID: 34720711 PMCID: PMC8547219 DOI: 10.1140/epjb/s10051-021-00193-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/31/2021] [Indexed: 05/14/2023]
Abstract
ABSTRACT We provide an overview of the Adaptive Resolution Simulation method (AdResS) based on discussing its basic principles and presenting its current numerical and theoretical developments. Examples of applications to systems of interest to soft matter, chemical physics, and condensed matter illustrate the method's advantages and limitations in its practical use and thus settle the challenge for further future numerical and theoretical developments.
Collapse
Affiliation(s)
| | - Matej Praprotnik
- Laboratory for Molecular Modeling, National Institute of Chemistry, Ljubljana, Slovenia and Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Luigi Delle Site
- Department of Mathematics and Computer Science, Institute for Mathematics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Delle Site L, Praprotnik M, Bell JB, Klein R. Particle–Continuum Coupling and its Scaling Regimes: Theory and Applications. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.201900232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Luigi Delle Site
- Freie Universität Berlin Institute of Mathematics Arnimallee 6, 14195 Berlin Germany
| | - Matej Praprotnik
- Laboratory for Molecular Modeling National Institute of Chemistry SI‐1001 Ljubljana, Slovenia & Department of Physics Faculty of Mathematics and Physics University of Ljubljana SI‐1000 Ljubljana Slovenia
| | - John B. Bell
- Lawrence Berkeley National Lab 1 Cyclotron Rd. Berkeley CA 94720 USA
| | - Rupert Klein
- Freie Universität Berlin Institute of Mathematics Arnimallee 6, 14195 Berlin Germany
| |
Collapse
|
4
|
Kreis K, Kremer K, Potestio R, Tuckerman ME. From classical to quantum and back: Hamiltonian adaptive resolution path integral, ring polymer, and centroid molecular dynamics. J Chem Phys 2018; 147:244104. [PMID: 29289131 DOI: 10.1063/1.5000701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Path integral-based methodologies play a crucial role for the investigation of nuclear quantum effects by means of computer simulations. However, these techniques are significantly more demanding than corresponding classical simulations. To reduce this numerical effort, we recently proposed a method, based on a rigorous Hamiltonian formulation, which restricts the quantum modeling to a small but relevant spatial region within a larger reservoir where particles are treated classically. In this work, we extend this idea and show how it can be implemented along with state-of-the-art path integral simulation techniques, including path-integral molecular dynamics, which allows for the calculation of quantum statistical properties, and ring-polymer and centroid molecular dynamics, which allow the calculation of approximate quantum dynamical properties. To this end, we derive a new integration algorithm that also makes use of multiple time-stepping. The scheme is validated via adaptive classical-path-integral simulations of liquid water. Potential applications of the proposed multiresolution method are diverse and include efficient quantum simulations of interfaces as well as complex biomolecular systems such as membranes and proteins.
Collapse
Affiliation(s)
- Karsten Kreis
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Raffaello Potestio
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Mark E Tuckerman
- Department of Chemistry, New York University (NYU), New York, New York 10003, USA
| |
Collapse
|
5
|
Zavadlav J, Podgornik R, Praprotnik M. Order and interactions in DNA arrays: Multiscale molecular dynamics simulation. Sci Rep 2017; 7:4775. [PMID: 28684875 PMCID: PMC5500594 DOI: 10.1038/s41598-017-05109-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/06/2017] [Indexed: 11/21/2022] Open
Abstract
While densely packed DNA arrays are known to exhibit hexagonal and orthorhombic local packings, the detailed mechanism governing the associated phase transition remains rather elusive. Furthermore, at high densities the atomistic resolution is paramount to properly account for fine details, encompassing the DNA molecular order, the contingent ordering of counterions and the induced molecular ordering of the bathing solvent, bringing together electrostatic, steric, thermal and direct hydrogen-bonding interactions, resulting in the observed osmotic equation of state. We perform a multiscale simulation of dense DNA arrays by enclosing a set of 16 atomistically resolved DNA molecules within a semi-permeable membrane, allowing the passage of water and salt ions, and thus mimicking the behavior of DNA arrays subjected to external osmotic stress in a bathing solution of monovalent salt and multivalent counterions. By varying the DNA density, local packing symmetry, and counterion type, we obtain osmotic equation of state together with the hexagonal-orthorhombic phase transition, and full structural characterization of the DNA subphase in terms of its positional and angular orientational fluctuations, counterion distributions, and the solvent local dielectric response profile with its order parameters that allow us to identify the hydration force as the primary interaction mechanism at high DNA densities.
Collapse
Affiliation(s)
- Julija Zavadlav
- Department of Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia.,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000, Ljubljana, Slovenia.,Chair of Computational Science, ETH Zurich, Clausiusstrasse 33, CH-8092, Zurich, Switzerland
| | - Rudolf Podgornik
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000, Ljubljana, Slovenia. .,Theoretical Physics Department, J. Stefan Institute, Jamova c. 39, SI-1000, Ljubljana, Slovenia.
| | - Matej Praprotnik
- Department of Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia. .,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|