1
|
Tan F, Yan R, Zhao C, Zhao N. Translocation Dynamics of an Active Filament through a Long-Length Scale Channel. J Phys Chem B 2023; 127:8603-8615. [PMID: 37782905 DOI: 10.1021/acs.jpcb.3c04250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Active filament translocation through a confined space is crucial for diverse biological processes. By using Langevin dynamics simulations, we investigate the translocation dynamics of an axially self-propelled chain through a channel. First, results show a suggestive reciprocal scaling of translocation time versus active force. Second, in the case of a long channel, we demonstrate a very intriguing nonmonotonic change of translocation time with increasing channel width. The driving force shows a similar trend, providing a consistent picture to understand the unexpected channel width effect. In particular, in a moderately broad channel, the disordered chain conformation results in a loss of driving force and thus inhibits translocation dynamics. Chain adsorption might occur in a wide channel, which accounts for a facilitated translocation. Lastly, we connect the translocation process to tension propagation (TP). A modified TP picture is proposed to interpret the waiting time distribution. Our work highlights the new phenomenology owing to the crucial interplay of activity and spacial confinement, which drives the translocation dynamics, going beyond the traditional entropic barrier scenario.
Collapse
Affiliation(s)
- Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Chaonan Zhao
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Singh SL, Chauhan K, Bharadwaj AS, Kishore V, Laux P, Luch A, Singh AV. Polymer Translocation and Nanopore Sequencing: A Review of Advances and Challenges. Int J Mol Sci 2023; 24:6153. [PMID: 37047125 PMCID: PMC10094227 DOI: 10.3390/ijms24076153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Various biological processes involve the translocation of macromolecules across nanopores; these pores are basically protein channels embedded in membranes. Understanding the mechanism of translocation is crucial to a range of technological applications, including DNA sequencing, single molecule detection, and controlled drug delivery. In this spirit, numerous efforts have been made to develop polymer translocation-based sequencing devices, these efforts include findings and insights from theoretical modeling, simulations, and experimental studies. As much as the past and ongoing studies have added to the knowledge, the practical realization of low-cost, high-throughput sequencing devices, however, has still not been realized. There are challenges, the foremost of which is controlling the speed of translocation at the single monomer level, which remain to be addressed in order to use polymer translocation-based methods for sensing applications. In this article, we review the recent studies aimed at developing control over the dynamics of polymer translocation through nanopores.
Collapse
Affiliation(s)
- Swarn Lata Singh
- Department of Physics, Mahila Mahavidyalaya (MMV), Banaras Hindu University, Varanasi 221005, UP, India
| | - Keerti Chauhan
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Atul S. Bharadwaj
- Department of Physics, CMP Degree College, University of Allahabad, Prayagraj 211002, UP, India
| | - Vimal Kishore
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
3
|
Fazli Z, Naji A. Rectification of polymer translocation through nanopores by nonchiral and chiral active particles. Phys Rev E 2023; 107:024602. [PMID: 36932605 DOI: 10.1103/physreve.107.024602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
We study translocation of a flexible polymer chain through a membrane pore under the influence of active forces and steric exclusion using Langevin dynamics simulations within a minimal two-dimensional model. The active forces on the polymer are imparted by nonchiral and chiral active particles that are introduced on one side or both sides of a rigid membrane positioned across the midline of a confining box. We show that the polymer can translocate through the pore to either side of the dividing membrane in the absence of external forcing. Translocation of the polymer to a given side of the membrane is driven (hindered) by an effective pulling (pushing) exerted by the active particles that are present on that side. The effective pulling results from accumulation of active particles around the polymer. This crowding effect signifies persistent motion of active particles causing prolonged detention times for them close to the confining walls and the polymer. The effective pushing that hinders the translocation, on the other hand, results from steric collisions that occur between the polymer and active particles. As a result of the competition between these effective forces, we find a transition between two rectified cis-to-trans and trans-to-cis translocation regimes. This transition is identified by a sharp peak in the average translocation time. The effects of active particles on the transition is studied by analyzing how the translocation peak is regulated by the activity (self-propulsion) strength of these particles, their area fraction, and chirality strength.
Collapse
Affiliation(s)
- Zahra Fazli
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
| | - Ali Naji
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
| |
Collapse
|
4
|
Jiang H, Hou Z. Nonequilibrium Dynamics of Chemically Active Particles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huijun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhonghuai Hou
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
5
|
Tan F, Chen Y, Zhao N. Effects of active crowder size and activity-crowding coupling on polymer translocation. SOFT MATTER 2021; 17:1940-1954. [PMID: 33427276 DOI: 10.1039/d0sm01906b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer translocation in complex environments is crucially important to many biological processes in life. In the present work, we adopted two-dimensional Langevin dynamics simulations to study the forced and unbiased polymer translocation dynamics in active and crowded media. The translocation time and probability are analyzed in terms of active force Fa, volume fraction φ and also the crowder size. The non-trivial active crowder size effect and activity-crowding coupling effect as well as the novel mechanism of unbiased translocation between two active environments with different active particle sizes are clarified. Firstly, for forced translocation, we reveal an intriguing non-monotonic dependence of the translocation time on the crowder size in the case of large activity. In particular, crowders of intermediate size similar to the polymer segment are proven to be the most favorable for translocation. Moreover, a facilitation-inhibition crossover of the translocation time with increasing volume fraction is observed, indicating a crucial activity-crowding coupling effect. Secondly, for unbiased translocation driven by different active crowder sizes, the translocation probability demonstrates a novel turnover phenomenon, implying the appearance of an opposite directional preference as the active force exceeds a critical value. The translocation time in both directions decreases monotonically with the active force. The asymmetric activity effect together with the entropic driving scenario provides a reasonable picture for the peculiar behavior observed in unbiased translocation.
Collapse
Affiliation(s)
- Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ying Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
6
|
Haji Abdolvahab R, Niknam Hamidabad M. Pore shapes effects on polymer translocation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:76. [PMID: 33306147 DOI: 10.1140/epje/i2020-12001-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
We translocated polymers through pores of different shapes and interaction patterns in three dimensions by Langevin molecular dynamics. There were four simple cylindrical pores of the same length but with different diameters. The results showed that even though decreasing the pore diameter would always decrease the translocation velocity, it was strongly dependent on the shape of the increased pore diameter. Although increasing the pore diameter made the translocation faster in simple cylindrical pores, it was complicated in different pore shapes, e.g. increasing the diameter in the middle decreased the translocation velocity. Investigating polymer shapes through the translocation process and comparing the shapes by the cumulative waiting time for different pore structures reveals the non-equilibrium properties of translocation. Moreover, polymer shape parameters such as gyration radius, polymer center of mass, and average aspect ratio help us to distinguish different pore shapes and/or different polymers.
Collapse
|
7
|
Niknam Hamidabad M, Asgari S, Haji Abdolvahab R. Nanoparticle-assisted polymer translocation through a nanopore. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Liu X, Jiang H, Hou Z. Non-monotonic dependence of polymer chain dynamics on active crowder size. J Chem Phys 2020; 152:204906. [PMID: 32486672 DOI: 10.1063/5.0007570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Configuration dynamics of flexible polymer chains is of ubiquitous importance in many biological processes. Here, we investigate a polymer chain immersed in a bath of size-changed active particles in two dimensional space using Langevin dynamics simulations. Particular attention is paid to how the radius of gyration Rg of the polymer chain depends on the size σc of active crowders. We find that Rg shows nontrivial non-monotonic dependence on σc: The chain first swells upon increasing σc, reaching a fully expanded state with maximum Rg, and then, Rg decreases until the chain collapses to a compact coil state if the crowder is large enough. Interestingly, the chain may oscillate between a collapse state and a stretched state at moderate crowder size. Analysis shows that it is the competition between two effects of active particles, one stretching the chain from inside due to persistence motion and the other compressing the chain from outside, that leads to the non-monotonic dependence. Besides, the diffusion of the polymer chain also shows nontrivial non-monotonic dependence on σc. Our results demonstrate the important interplay between particle activity and size associated with polymer configurations in active crowding environments.
Collapse
Affiliation(s)
- Xinshuang Liu
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Liu X, Jiang H, Hou Z. Configuration dynamics of a flexible polymer chain in a bath of chiral active particles. J Chem Phys 2019; 151:174904. [DOI: 10.1063/1.5125607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xinshuang Liu
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|