1
|
Ostadsharif Memar Z, Moosavi M. Comparative assessment of the performance of density functionals and dispersion correction on different properties of dicationic ionic liquids - an ab initio molecular dynamics (AIMD) study. Phys Chem Chem Phys 2024; 26:26109-26128. [PMID: 39378023 DOI: 10.1039/d4cp03177f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
In this study, we investigated the effect of DFT density functionals and dispersion correction on an imidazolium-based dicationic ionic liquid (DIL) using ab initio molecular dynamics simulations. To achieve this purpose, the electronic structures, as well as the structural and dynamical properties of [C3(mim)2][NTF2]2 DIL, were obtained using the BLYP and PBE functionals, both with and without D3-correction, and the results were compared with experimental values. Radial distribution functions and structure factors revealed that applying D3-correction increases the interaction between the anion and hydrogen atoms of the rings and side chains. The simulation of the studied DIL with the BLYP-D3 functional depicted lower structural heterogeneity compared to the other functionals. Analysis of Voronoi tessellation and linkage chain conformations showed a reduction in the aggregation of the linkage alkyl chains in the presence of D3-correction, which is more pronounced in the BLYP functional than in PBE. Additionally, it was observed that the probability of forming a hydrogen-bond network depends on both the type of used density functionals and applying dispersion correction. The results of dynamical properties, such as the self-diffusion coefficients, velocity autocorrelation function, and van Hove correlation function, as well as ion pair, ion cage, and hydrogen bond dynamics, indicated that applying D3-correction in both density functionals leads to an increase in the dynamics of the studied DIL. Additionally, the ratio of self-diffusion coefficients of the anion to the cation in the BLYP functional is closer to experimental values compared to the PBE functional. Furthermore, the electronic structure, including dipole moment distribution, and also infrared (IR) and power spectra were studied. Applying D3-correction and the type of density functionals have a significant effect on the dipole moment distribution of ions. Moreover, the results of IR and power spectra demonstrated that only in the BLYP functional, by applying D3-correction, the hydrogen bonding between the anion and the hydrogen atoms of the cation is strengthened at high wavenumbers. Thus, we conclude that applying D3 correction to both the BLYP and PBE density functionals improves the accuracy in describing the various properties of the studied system. Overall, the evaluation of different structural, dynamical, and vibrational properties of [C3(mim)2][NTF2]2 DIL suggests that the BLYP-D3 density functional may be the best choice among the studied density functionals.
Collapse
Affiliation(s)
| | - Majid Moosavi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
2
|
Memar ZO, Moosavi M. Uncovering the Properties of Dicationic Ionic Liquid Nanodroplets through Ab Initio Molecular Dynamics Simulations. J Phys Chem B 2023; 127:9111-9131. [PMID: 37843820 DOI: 10.1021/acs.jpcb.3c03585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The behavior of nanodroplets of an imidazolium-based dicationic ionic liquid, i.e., [C1(mim)2][PF6]2, was investigated in this study using ab initio molecular dynamics simulations. The vibrational features as well as the structural, interfacial, and dynamical properties of different sized droplets were analyzed and compared to the bulk phase system. Structural properties of the droplets, such as π-π stacking, radial distribution functions, structure factors, combined distribution functions, and angular distribution functions were analyzed to understand the interactions and orientations of their ions. The vibrational features and hydrogen bonding strength of droplets were studied by calculating their infrared (IR) and power spectra, determining the contribution of different types of hydrogen bonding to each vibrational mode. The calculated spectra showed good overall agreement with the experimental results. The interfacial properties of the droplets and the orientation of their ions were analyzed using density profiles and an exposed surface. The results showed that, in all systems studied, cations and anions were equally likely to exist in both inner and outer layers, and the cations tended to be oriented toward the center of droplets with obtuse angles. Additionally, the droplet densities were extrapolated to predict the bulk phase density with less than 2% deviation. The dynamical properties of hydrogen bonds, mean square displacement, and van Hove correlations of cations and anions were also analyzed. The results indicated that there was no regular trend in the dynamic properties of droplets with an increasing system size.
Collapse
Affiliation(s)
| | - Majid Moosavi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
3
|
Philippi F, Welton T. Targeted modifications in ionic liquids - from understanding to design. Phys Chem Chem Phys 2021; 23:6993-7021. [PMID: 33876073 DOI: 10.1039/d1cp00216c] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ionic liquids are extremely versatile and continue to find new applications in academia as well as industry. This versatility is rooted in the manifold of possible ion types, ion combinations, and ion variations. However, to fully exploit this versatility, it is imperative to understand how the properties of ionic liquids arise from their constituents. In this work, we discuss targeted modifications as a powerful tool to provide understanding and to enable design. A 'targeted modification' is a deliberate change in the structure of an ionic liquid. This includes chemical changes in an experiment as well as changes to the parameterisation in a computer simulation. In any case, such a change must be purposeful to isolate what is of interest, studying, as far as is possible, only one concept at a time. The concepts can then be used as design elements. However, it is often found that several design elements interact with each other - sometimes synergistically, and other times antagonistically. Targeted modifications are a systematic way of navigating these overlaps. We hope this paper shows that understanding ionic liquids requires experimentalists and theoreticians to join forces and provides a tool to tackle the difficult transition from understanding to design.
Collapse
Affiliation(s)
- Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
| | | |
Collapse
|
4
|
Kirchner B, Blasius J, Esser L, Reckien W. Predicting Vibrational Spectroscopy for Flexible Molecules and Molecules with Non‐Idle Environments. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Barbara Kirchner
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| | - Lars Esser
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| | - Werner Reckien
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| |
Collapse
|
5
|
Seeger ZL, Izgorodina EI. A Systematic Study of DFT Performance for Geometry Optimizations of Ionic Liquid Clusters. J Chem Theory Comput 2020; 16:6735-6753. [PMID: 32865998 DOI: 10.1021/acs.jctc.0c00549] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clusters of two ion pairs of imidazolium-based ionic liquids were optimized with 43 different levels of theory, including DFT functionals and MP2-based methods combined with varying Dunning's basis sets, and added dispersion corrections. Better preforming DFT functionals were then applied to clusters consisting of four ion pairs. Excellent performance of some DFT functionals for the two ion pair clusters did not always match that of the four ion-paired clusters despite interionic distances remaining constant between the optimized two and four ion-paired clusters of the same ionic liquid. Combinations of DFT functional and basis set such as ωB97X-D/cc-pVDZ, M06-2X/aug-cc-pVDZ, B3LYP-D3/cc-pVTZ, and TPSS-D3/cc-pVTZ gave excellent results for geometry optimization of two ion-paired clusters of imidazolium ionic liquids but gave larger deviations when applied to the four ion-paired clusters of varying ionic liquids. Empirical dispersion corrections were seen to be crucial in correctly capturing correlation effects in the studied ionic liquid clusters, becoming more important in larger clusters. Dunning's double-ζ basis set, cc-pVDZ, is associated with the smallest root mean squared deviations for geometries; however, it also produces the largest deviations in total electronic energies. ωB97X-D and M06-2X produced the best performance with the augmented version of this basis set. The triple-ζ basis set, cc-pVTZ, leads to the best performance of most of the DFT functionals (especially the dispersion-corrected ones) used, whereas its augmented version, aug-cc-pVTZ, was not seen to improve results. The combinations of functional and basis set that gave the best geometry and energetics in both two and four ion-paired clusters were PBE-D3/cc-pVTZ, ωB97X-D/aug-cc-pVDZ, and BLYP-D3/cc-pVTZ. All three combinations are recommended for geometry optimizations of larger clusters of ionic liquids. PBE-D3/cc-pVTZ performed the best with an average deviation of 2.3 kJ mol-1 and a standard deviation of 3.4 kJ mol-1 for total electronic energy when applied to four ion-paired clusters. Geometries optimized with FMO2-SRS-MP2/cc-pVTZ produced total energy within 2.0 kJ mol-1 off the benchmark in two ion-paired clusters, with the cc-pVDZ basis set performing unsurprisingly poorly with the same method. The error increased to 4.8 kJ mol-1 on average in four ion-paired clusters, with the smallest RMSD deviations in geometries when compared to the benchmark ones. This study is the first report that investigated the performance of DFT functionals for two and four ion-paired clusters of a wide range of ionic liquids consisting of commonly used cations such as pyrrolidinium, imidazolium, pyridinium, and ammonium. It also identified the importance of assessing the performance of quantum chemical methods for ionic liquids on a variety of cation-anion combinations.
Collapse
Affiliation(s)
- Zoe L Seeger
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - Ekaterina I Izgorodina
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
Liu S, Yu H, Zhang X, Cai Y. Reversed‐phase ion‐pair solid‐phase extraction and ion chromatography analysis of pyrrolidinium ionic liquid cations in environmental water samples. J Sep Sci 2020; 43:2743-2749. [DOI: 10.1002/jssc.202000234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Sheng Liu
- College of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| | - Hong Yu
- College of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| | - Xue Zhang
- College of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| | - Ya‐qi Cai
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental ScienceChinese Academy of Sciences Beijing P. R. China
| |
Collapse
|
7
|
Perlt E, Ray P, Hansen A, Malberg F, Grimme S, Kirchner B. Finding the best density functional approximation to describe interaction energies and structures of ionic liquids in molecular dynamics studies. J Chem Phys 2018; 148:193835. [PMID: 30307237 DOI: 10.1063/1.5013122] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ionic liquids raise interesting but complicated questions for theoretical investigations due to the fact that a number of different inter-molecular interactions, e.g., hydrogen bonding, long-range Coulomb interactions, and dispersion interactions, need to be described properly. Here, we present a detailed study on the ionic liquids ethylammonium nitrate and 1-ethyl-3-methylimidazolium acetate, in which we compare different dispersion corrected density functional approximations to accurate local coupled cluster data in static calculations on ionic liquid clusters. The efficient new composite method B97-3c is tested and has been implemented in CP2K for future studies. Furthermore, tight-binding based approaches which may be used in large scale simulations are assessed. Subsequently, ab initio as well as classical molecular dynamics simulations are conducted and structural analyses are presented in order to shed light on the different short- and long-range structural patterns depending on the method and the system size considered in the simulation. Our results indicate the presence of strong hydrogen bonds in ionic liquids as well as the aggregation of alkyl side chains due to dispersion interactions.
Collapse
Affiliation(s)
- Eva Perlt
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Promit Ray
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Friedrich Malberg
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|
8
|
Gehrke S, von Domaros M, Clark R, Hollóczki O, Brehm M, Welton T, Luzar A, Kirchner B. Structure and lifetimes in ionic liquids and their mixtures. Faraday Discuss 2018; 206:219-245. [DOI: 10.1039/c7fd00166e] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the aid of molecular dynamics simulations, we study the structure and dynamics of different ionic liquid systems.
Collapse
Affiliation(s)
- Sascha Gehrke
- Mulliken Center for Theoretical Chemistry
- University of Bonn
- D-53115 Bonn
- Germany
- Max Planck Institute for Chemical Energy Conversion
| | - Michael von Domaros
- Mulliken Center for Theoretical Chemistry
- University of Bonn
- D-53115 Bonn
- Germany
| | | | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry
- University of Bonn
- D-53115 Bonn
- Germany
| | - Martin Brehm
- Theoretical Chemistry
- Martin-Luther-University Halle-Wittenberg
- D-06108 Halle
- Germany
| | | | - Alenka Luzar
- Department of Chemistry
- Virginia Commonwealth University
- Richmond
- USA
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry
- University of Bonn
- D-53115 Bonn
- Germany
| |
Collapse
|
9
|
Elfgen R, Hollóczki O, Kirchner B. A Molecular Level Understanding of Template Effects in Ionic Liquids. Acc Chem Res 2017; 50:2949-2957. [PMID: 29131941 DOI: 10.1021/acs.accounts.7b00436] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure-directing or template effect has been invoked several times for ionic liquids to explain the different outcome in material synthesis, namely, different scaffolds or geometrical arrangements with varying ionic liquids. It is obvious to assume that such an effect can originate from the most likely complex microstructure, being present within the ionic liquid itself. In that regard, ionic liquids have already been shown to undergo a nanosegregation into polar and nonpolar phases, which is commonly known and denoted as microheterogeneity. In order to provide detailed insight on the molecular level and to understand the effects rising from this structuring, we performed molecular dynamics simulations on selected very simple model systems composed of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, considering ethyl, butyl, hexyl, and octyl side chains attached to the cations, mixed with either n-dodecanol or n-butanol. By analyzing snapshots of the simulation boxes and calculating spatial distribution functions, we can visualize that with increasing side chains, the systems show considerable nanosegregation into polar and nonpolar domains. Combined angular and distance distribution functions show that in case of the nanosegregating systems the side chains of the cations are preferentially arranged in a parallel fashion, which indicates a micelle-like structure for the ionic liquids. The alcohol molecules participate in and are, therefore, influenced by this microheterogeneity. It can be shown that in the case of the short IL alkyl side chains, the self-aggregation of the nonpolar units of the alcohols is much stronger, while for the long chain cations, the nonpolar entities of the alcohols are most often connected to the nonpolar units of the ionic liquids. Using our domain analysis tool, we can quantify these observations by tracking the number, size, and shape of the polar and nonpolar entities present in the different investigated systems. The aforementioned combined angular-distance distribution functions reveal a structure-directing effect of the ionic liquids on the alcohol molecules within our simple model systems. The ionic liquids act as template and order the alcohol molecules according to their own structure, resulting in a parallel alignment of the alkyl side chains of the alcohols and ionic liquid cations, with both polar groups being at the same side. These observations show that the microheterogeneous structure of ionic liquids can indeed be applied to order substrates with respect to each other or, for example, to catalysts in a predetermined fashion, opening new possibilities for explaining or enhancing selectivities of chemical reactions in ionic liquids.
Collapse
Affiliation(s)
- Roman Elfgen
- Mulliken
Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45413 Mülheim an der Ruhr, Germany
| | - Oldamur Hollóczki
- Mulliken
Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken
Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|
10
|
Kachmar A, Carignano M, Laino T, Iannuzzi M, Hutter J. Mapping the Free Energy of Lithium Solvation in the Protic Ionic Liquid Ethylammonuim Nitrate: A Metadynamics Study. CHEMSUSCHEM 2017; 10:3083-3090. [PMID: 28547888 DOI: 10.1002/cssc.201700510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Understanding lithium solvation and transport in ionic liquids is important due to their possible application in electrochemical devices. Using first-principles simulations aided by a metadynamics approach we study the free-energy landscape for lithium ions at infinite dilution in ethylammonium nitrate, a protic ionic liquid. We analyze the local structure of the liquid around the lithium cation and obtain a quantitative picture in agreement with experimental findings. Our simulations show that the lowest two free energy minima correspond to conformations with the lithium ion being solvated either by three or four nitrate ions with a transition barrier between them of 0.2 eV. Other less probable conformations having different solvation pattern are also investigated.
Collapse
Affiliation(s)
- Ali Kachmar
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Marcelo Carignano
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Teodoro Laino
- Industry Solutions and Cognitive Computing, IBM Zurich Research Laboratory, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
11
|
Ray P, Vogl T, Balducci A, Kirchner B. Structural Investigations on Lithium-Doped Protic and Aprotic Ionic Liquids. J Phys Chem B 2017; 121:5279-5292. [DOI: 10.1021/acs.jpcb.7b02636] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Promit Ray
- Mulliken
Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4 + 6, D-53115 Bonn, Germany
| | - Thomas Vogl
- Helmholtz Institute Ulm, Helmholtzstr.
11, 89081 Ulm, Germany
| | - Andrea Balducci
- Institute
for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743 Jena, Germany
- Center
for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Barbara Kirchner
- Mulliken
Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4 + 6, D-53115 Bonn, Germany
| |
Collapse
|