1
|
Kokoouline V, Alijah A, Tyuterev V. Lifetimes and decay mechanisms of isotopically substituted ozone above the dissociation threshold: matching quantum and classical dynamics. Phys Chem Chem Phys 2024; 26:4614-4628. [PMID: 38251711 DOI: 10.1039/d3cp04286c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Energies and lifetimes of vibrational resonances were computed for 18O-enriched isotopologue 50O3 = {16O16O18O and 16O18O16O} of the ozone molecule using hyperspherical coordinates and the method of complex absorbing potential. Various types of scattering resonances were identified, including roaming OO-O rotational states, the series corresponding to continuation of bound vibrational resonances of highly excited bending or symmetric stretching vibrational modes. Such a series become metastable above the dissociation limit. The coupling between the vibrationally excited O2 fragment and rotational roaming gives rise to Feshbach type resonances in ozone. Different paths for the formation and decay of symmetric 16O18O16O and asymmetric species 16O16O18O were also identified. The symmetry properties of the total rovibronic wave functions of the 18O-enriched isotopologues are discussed in the context of allowed dissociation channels.
Collapse
Affiliation(s)
| | - Alexander Alijah
- Groupe de Spectrometrie Moléculaire et Atmospherique, UMR CNRS 7331, University of Reims Champagne-Ardenne, Reims Cedex 2, F-51687, France
| | - Vladimir Tyuterev
- Laboratory of Molecular Quantum Mechanics and Radiative transfer, Tomsk State University, Tomsk, Russia
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Russian Academy of Sciences, Tomsk, 634055, Russia
| |
Collapse
|
2
|
Tyuterev VG, Barbe A, Manceron L, Grouiez B, Tashkun SA, Burgalat J, Rotger M. Ozone spectroscopy in the terahertz range from first high-resolution Synchrotron SOLEIL experiments combined with far-infrared measurements and ab initio intensity calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123456. [PMID: 37897864 DOI: 10.1016/j.saa.2023.123456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 10/30/2023]
Abstract
Ozone is one of the important molecules in terms of the impact on the atmospheric chemistry, climate changes, bio- and eco-systems and human health. It has a strong absorption in the microwave, terahertz and far-infrared spectral ranges where a large part of the Earth's outgoing longwave radiation to space is located. In this work, the observations, and analyses of the ozone high-resolution spectra in the THz range recorded using the Synchrotron light source of the SOLEIL CNRS equipment are reported for the first time. Thanks to the exceptional brightness of the Synchrotron radiation and to the signal/noise ratio, it was possible to observe many more ozone transitions of the cold rotational band and the hot ν2-ν2 band in the range 0.9-6 THz compared to the previous works. In addition, we have carried out new measurements and assignments for the ν2 band. The simultaneous fit of the rotational band GS-GS, the hot band ν2-ν2 and the FIR ν2 band yielded an overall weighted standard deviation of 0.68 for 13,466 line positions within the experimental accuracy. This includes all previously available MW (with the best uncertainty 0.1 - 10 kHz), FIR data and the original SOLEIL measurements that provided experimental accuracy of 0.00005 - 0.0001 cm-1 for the best lines. Significant deviations in new experimental spectra compared to available spectroscopic databases were evidenced, particularly for the line positions and energy levels at high J, Ka rotational quantum numbers that are the most pronounced in the 4.5 - 6 THz range. Accurate ab initio calculations of line intensities combined with empirically fitted line positions were used to create new linelists that permit theoretical modelling of the transmittance in a good agreement with the Synchrotron spectra in the entire range of observations for various pressures and optical paths. The region near 100 cm-1 and above appears to be more sensitive to the temperature conditions that should be considered in atmospheric observation for the currently operational and future ground based and space missions.
Collapse
Affiliation(s)
- V G Tyuterev
- National Research Tomsk State University, Tomsk, 634050, Russia; V. E. Zuev Institute of Atmospheric Optics, SB Russian Academy of Sciences, Tomsk 634050, Russia.
| | - A Barbe
- GSMA UMR 7331 Université de Reims, 51000, France
| | - L Manceron
- Synchrotron SOLEIL, Beamline AILES, Saint-Aubin, France
| | - B Grouiez
- GSMA UMR 7331 Université de Reims, 51000, France
| | - S A Tashkun
- V. E. Zuev Institute of Atmospheric Optics, SB Russian Academy of Sciences, Tomsk 634050, Russia
| | - J Burgalat
- GSMA UMR 7331 Université de Reims, 51000, France
| | - M Rotger
- GSMA UMR 7331 Université de Reims, 51000, France
| |
Collapse
|
3
|
Nikitin AV, Campargue A, Protasevich AE, Rey M, Sung K, Tyuterev VG. Analysis of experimental spectra of phosphine in the Tetradecad range near 2.3 μm using ab initio calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122896. [PMID: 37331254 DOI: 10.1016/j.saa.2023.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
Due to its major interest for the chemistry of planetary atmospheres and exobiology, accurate spectroscopy data of phosphine are required for the search of signatures of this molecule in astronomical observations. In this work, high resolution infrared laboratory spectra of phosphine were analyzed for the first time in the full Tetradecad region (3769-4763 cm-1) involving 26 rotationally resolved bands. Overall, 3242 lines were assigned in spectra previously recorded by Fourier transform spectroscopy at temperatures 200 K and 296 K, using a combined theoretical model based on ab initio calculations. The total nuclear motion Hamiltonian of PH3 including ab initio potential energy surface, was reduced to an effective Hamiltonian using the high-order contact transformation method adapted to vibrational polyads of the AB3 symmetric top molecules, followed by empirical optimization of the parameters. At this step, the experimental line positions were reproduced with a standard deviation of 0.0026 cm-1 that provided unambiguous identification of observed transitions. The effective dipole transition moments of the bands were obtained by fitting to the intensities obtained from variational calculations using the ab initio dipole moment surface. The assigned lines were used to newly determine 1609 experimental vibration-rotational levels up to Jmax = 18 with energy in the range 3896-6037 cm-1 that represents significant extension towards higher energies compared to previous works. Transitions for all 26 sublevels of the Tetradecad were identified but with noticeably fewer transitions for fourfold excited bands because of their weaker intensity. At the final step, pressure-broadened half widths were attached to each transition and a composite line list adopting ab initio intensities and empirical line positions corrected to the accuracy of about 0.001 cm-1 for strong and medium transitions was validated against experimental spectra available in the literature.
Collapse
Affiliation(s)
- A V Nikitin
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB RAS, 1, Academician Zuev square, 634021 Tomsk, Russia.
| | - A Campargue
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - A E Protasevich
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB RAS, 1, Academician Zuev square, 634021 Tomsk, Russia
| | - M Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France
| | - K Sung
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Vl G Tyuterev
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB RAS, 1, Academician Zuev square, 634021 Tomsk, Russia
| |
Collapse
|
4
|
Damour Y, Quintero-Monsebaiz R, Caffarel M, Jacquemin D, Kossoski F, Scemama A, Loos PF. Ground- and Excited-State Dipole Moments and Oscillator Strengths of Full Configuration Interaction Quality. J Chem Theory Comput 2023; 19:221-234. [PMID: 36548519 DOI: 10.1021/acs.jctc.2c01111] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report ground- and excited-state dipole moments and oscillator strengths (computed in different "gauges" or representations) of full configuration interaction (FCI) quality using the selected configuration interaction method known as Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI). Thanks to a set encompassing 35 ground- and excited-state properties computed in 11 small molecules, the present near-FCI estimates allow us to assess the accuracy of high-order coupled-cluster (CC) calculations including up to quadruple excitations. In particular, we show that incrementing the excitation degree of the CC expansion (from CC with singles and doubles (CCSD) to CC with singles, doubles, and triples (CCSDT) or from CCSDT to CC with singles, doubles, triples, and quadruples (CCSDTQ)) reduces the average error with respect to the near-FCI reference values by approximately 1 order of magnitude.
Collapse
Affiliation(s)
- Yann Damour
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Raúl Quintero-Monsebaiz
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Michel Caffarel
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.,Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
5
|
Wang H, Xiang Y, Liu W, Li J, Zhu N, Lou Z. Low-molecular-weight dissolved organic nitrogen transformation behavior in concentrated leachate by O 3 and •OH: Partition, molecular insight, and potential precursor-product relationship. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116287. [PMID: 36174476 DOI: 10.1016/j.jenvman.2022.116287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Low-molecular-weight dissolved organic nitrogen (LMW-DON) is an emerging issue in concentrated leachate (CL). Ozonation is crucial to remove LMW-DON, but selectivity mechanisms of different reactive oxygen species were unknown. Here, reactions of O3 and •OH with LMW-DON at different dosages were determined from composition, unsaturation/redox potential, and precursor-product relationship. The molecular weight of LMW-DON in CL presented a normal distribution and 76.5% was below 450 Da. LMW-DON with 400-1000 Da increased to 55.6%-66.7% and O/Cwa increased by over 40.0% due to electrophilic substitution of O3. LMW-DON with <400 Da and 550-1000 Da were preferentially degraded by •OH at the low and high O3 dosage, respectively. O3 preferred to remove lipid-like (69.1%), protein-like (58.2%), and amino sugars-like (72.8%) LMW-DON, whereas •OH preferred to the refractory LMW-DON, such as carbohydrates-like (71.1%), lignin-like (49.6%), and tannins-like (72.5%) LMW-DON. Forty-three transformation reactions were quantified using mass difference analysis, and O3 preferred to oxygen addition (e.g., +2O) and conversed amino to nitro groups, and saturated LMW-DON increased via unsaturated bonds rupture. •OH attacked the carbon groups (e.g., -CH2) and nitrogen groups (e.g., -NH3+O, -NO2+H). These findings provide molecular evidence for the selectivity of oxidants with LMW-DON and improve the ozonation application in wastewater treatment.
Collapse
Affiliation(s)
- Hui Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai, 200240, China
| | - Yan Xiang
- School of College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Wei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai, 200240, China
| | - Jiyang Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai, 200240, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai, 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China; China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
6
|
Tyuterev V, Tashkun S, Rey M, Nikitin A. High-order contact transformations of molecular Hamiltonians: general approach, fast computational algorithm and convergence of ro-vibrational polyad models. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2096140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Vladimir Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique, Université de Reims, Reims, France
- Laboratory of Molecular Quantum Mechanics and Radiative Transfer, Tomsk State University, Tomsk, Russia
| | - Sergey Tashkun
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
| | - Michael Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique, Université de Reims, Reims, France
| | - Andrei Nikitin
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
7
|
Barbe A, Mikhailenko S, Starikova E, Tyuterev V. High Resolution Infrared Spectroscopy in Support of Ozone Atmospheric Monitoring and Validation of the Potential Energy Function. Molecules 2022; 27:911. [PMID: 35164172 PMCID: PMC8838290 DOI: 10.3390/molecules27030911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
The first part of this review is a brief reminder of general information concerning atmospheric ozone, particularly related to its formation, destruction, observations of its decrease in the stratosphere, and its increase in the troposphere as a result of anthropogenic actions and solutions. A few words are said about the abandonment of the Airbus project Alliance, which was expected to be the substitute of the supersonic Concorde. This project is over due to the theoretical evaluation of the impact of a fleet in the stratosphere and has been replaced by the A380, which is now operating. The largest part is devoted to calculations and observations of the transitions in the infrared range and their applications for the atmosphere based both on effective models (Hamiltonian, symmetry rules, and dipole moments) and ab initio calculations. The complementarities of the two approaches are clearly demonstrated, particularly for the creation of an exhaustive line list consisting of more than 300,000 lines reaching experimental accuracies (from 0.00004 to 0.001 cm-1) for positions and a sub percent for the intensities in the 10 microns region. This contributes to definitively resolving the issue of the observed discrepancies between line intensity data in different spectral regions: between the infrared and ultraviolet ranges, on the one hand, and between 10 and 5 microns on the other hand. The following section is devoted to the application of recent work to improve the knowledge about the behavior of potential function at high energies. A controversial issue related to the shape of the potential function in the transition state range near the dissociation is discussed.
Collapse
Affiliation(s)
- Alain Barbe
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, UFR Sciences Exactes et Naturelles, CEDEX02, BP 1039-51687 Reims, France;
| | - Semen Mikhailenko
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055 Tomsk, Russia; (S.M.); (E.S.)
- Climate and Environmental Physics Laboratory, Ural Federal University, 19, Mira av., 620002 Yekaterinburg, Russia
| | - Evgeniya Starikova
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055 Tomsk, Russia; (S.M.); (E.S.)
| | - Vladimir Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, UFR Sciences Exactes et Naturelles, CEDEX02, BP 1039-51687 Reims, France;
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055 Tomsk, Russia; (S.M.); (E.S.)
- Laboratory of Quantum Mechanics of Molecules and Radiative Processes, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
8
|
Kalugina YN, Egorov O, van der Avoird A. Ab initio study of the O 3-N 2 complex: Potential energy surface and rovibrational states. J Chem Phys 2021; 155:054308. [PMID: 34364361 DOI: 10.1063/5.0061749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The formation and destruction of O3 within the Chapman cycle occurs as a result of inelastic collisions with a third body. Since N2 is the most abundant atmospheric molecule, it can be considered as the most typical candidate when modeling energy-transfer dynamics. We report a new ab initio potential energy surface (PES) of the O3-N2 van der Waals complex. The interaction energies were calculated using the explicitly correlated single- and double-excitation coupled cluster method with a perturbative treatment of triple excitations [CCSD(T)-F12a] with the augmented correlation-consistent triple-zeta aug-cc-pVTZ basis set. The five-dimensional PES was analytically represented by an expansion in spherical harmonics up to eighth order inclusive. Along with the global minimum of the complex (De = 348.88 cm-1), with N2 being perpendicular to the O3 plane, six stable configurations were found with a smaller binding energy. This PES was employed to calculate the bound states of the O3-N2 complex with both ortho- and para-N2 for total angular momentum J = 0 and 1, as well as dipole transition probabilities. The nature of the bound states of the O3-oN2 and O3-pN2 species is discussed based on their rovibrational wave functions.
Collapse
Affiliation(s)
- Yulia N Kalugina
- Laboratory of Quantum Mechanics of Molecules and Radiative Processes, Tomsk State University 36, Lenin Ave., Tomsk 634050, Russia
| | - Oleg Egorov
- Laboratory of Quantum Mechanics of Molecules and Radiative Processes, Tomsk State University 36, Lenin Ave., Tomsk 634050, Russia
| | - Ad van der Avoird
- Theoretical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
9
|
Tajti A, Szalay PG, Kochanov R, Tyuterev VG. Diagonal Born-Oppenheimer corrections to the ground electronic state potential energy surfaces of ozone: improvement of ab initio vibrational band centers for the 16O 3, 17O 3 and 18O 3 isotopologues. Phys Chem Chem Phys 2020; 22:24257-24269. [PMID: 33089270 DOI: 10.1039/d0cp02457k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mass-dependent diagonal Born-Oppenheimer corrections (DBOCs) to the ab initio electronic ground state potential energy surface for the main 16O3 isotopologue and for homogeneous isotopic substitutions 17O3 and 18O3 of the ozone molecule are reported for the first time. The system being of strongly multiconfigurational character, multireference configuration interaction wave function ansatz with different complete active spaces was used. The reliable DBOC calculations with the targeted accuracy were possible to carry out up to about half of the dissociation threshold D0. The comparison with the experimental band centers shows a significant improvement of the accuracy with respect to the best Born-Oppenheimer (BO) ab initio calculations reducing the total root-mean-squares (calculated-observed) deviations by about a factor of two. For the set of 16O3 vibrations up to five bending and four stretching quanta, the mean (calculated-observed) deviations drop down from 0.7 cm-1 (BO) to about 0.1 cm-1, with the most pronounced improvement seen for bending states and for mixed bending-stretching polyads. In the case of bending band centers directly observed under high spectral resolutions, the errors are reduced by more than an order of magnitude down to 0.02 cm-1 from the observed levels, approaching nearly experimental accuracy. A similar improvement for heavy isotopologues shows that the reported DBOC corrections almost remove the systematic BO errors in vibrational levels below D0/2, though the scatter increases towards higher energies. The possible reasons for this finding, as well as remaining issues are discussed in detail. The reported results provide an encouraging accuracy validation for the multireference methods of the ab initio theory. New sets of ab initio vibrational states can be used for improving effective spectroscopic models for analyses of the observed high-resolution spectra, particularly in the cases of accidental resonances with "dark" states requiring accurate theoretical predictions.
Collapse
Affiliation(s)
- Attila Tajti
- ELTE Eötvös Loránd University, Institute of Chemistry, Laboratory of Theoretical Chemistry, P. O. Box 32, H-1518, Budapest 112, Hungary.
| | | | | | | |
Collapse
|
10
|
Abstract
This paper presents an overview of the current status of the Virtual Atomic and Molecular Data Centre (VAMDC) e-infrastructure, including the current status of the VAMDC-connected (or to be connected) databases, updates on the latest technological development within the infrastructure and a presentation of some application tools that make use of the VAMDC e-infrastructure. We analyse the past 10 years of VAMDC development and operation, and assess their impact both on the field of atomic and molecular (A&M) physics itself and on heterogeneous data management in international cooperation. The highly sophisticated VAMDC infrastructure and the related databases developed over this long term make them a perfect resource of sustainable data for future applications in many fields of research. However, we also discuss the current limitations that prevent VAMDC from becoming the main publishing platform and the main source of A&M data for user communities, and present possible solutions under investigation by the consortium. Several user application examples are presented, illustrating the benefits of VAMDC in current research applications, which often need the A&M data from more than one database. Finally, we present our vision for the future of VAMDC.
Collapse
|
11
|
Nikitin AV, Rey M, Chizhmakova IS, Tyuterev VG. First Full-Dimensional Potential Energy and Dipole Moment Surfaces of SF6. J Phys Chem A 2020; 124:7014-7023. [DOI: 10.1021/acs.jpca.0c02733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrei V. Nikitin
- V.E. Zuev Institute of Atmospheric Optics, Russian Academy of Sciences, 1, Akademichesky Avenue, 634055 Tomsk, Russian Federation
| | - Michael Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 6089, Université de Reims, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France
| | - Iana S. Chizhmakova
- Institute of Monitoring of Climatic and Ecological Systems, Russian Academy of Sciences, 10/3, Academichesky Avenue, 634055 Tomsk, Russian Federation
- QUAMER Laboratory, Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russian Federation
| | - Vladimir G. Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 6089, Université de Reims, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France
- QUAMER Laboratory, Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russian Federation
| |
Collapse
|
12
|
Sarka J, Poirier B. Comment on "Calculated vibrational states of ozone up to dissociation" [J. Chem. Phys. 144, 074302 (2016)]. J Chem Phys 2020; 152:177101. [PMID: 32384842 DOI: 10.1063/5.0002762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- János Sarka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Bill Poirier
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
13
|
Kokoouline V, Lapierre D, Alijah A, Tyuterev V. Localized and delocalized bound states of the main isotopologue 48O 3 and of 18O-enriched 50O 3 isotopomers of the ozone molecule near the dissociation threshold. Phys Chem Chem Phys 2020; 22:15885-15899. [PMID: 32642747 DOI: 10.1039/d0cp02177f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Knowledge of highly excited rovibrational states of ozone isotopologues is of key importance for modelling the dynamics of exchange reactions, for understanding longstanding problems related to isotopic anomalies of the ozone formation, and for analyses of extra-sensitive laser spectral experiments currently in progress. This work is devoted to new theoretical study of high-energy states for the main isotopologue 48O3 = 16O16O16O and for the family of 18O-enriched isotopomers 50O3 = {16O16O18O, 16O18O16O, 18O16O16O} of the ozone molecule considered using a full-symmetry approach. Energies and wave functions of bound states near the dissociation threshold are computed in hyperspherical coordinates accounting for the permutation symmetry of three identical nuclei in 48O3 and of two identical nuclei in 50O3, using the most accurate potential energy surface available now. The obtained vibrational band centers agree with observed ones with the root-mean-squares deviation of about 1 cm-1, making the results appropriate for assignments and analyses of future experimental spectra. The levels delocalized between the three potential wells of ozone isomers are computed and analyzed. The states situated deep in the three (for 48O3) or two (for 50O3) equivalent potential wells have similar energies with negligible splitting. However, the states situated just below the potential barriers separating the wells, are split due to the tunneling between the wells resulting in the splitting of rovibrational sub-bands. We evaluate the amplitudes of the corresponding effects and consider possible perturbations in vibration-rotation bands due to interactions between three potential wells. Theoretical predictions for the splitting of observable band centers are provided for the first time.
Collapse
Affiliation(s)
| | - David Lapierre
- Groupe de Spectrometrie Moléculaire et Atmospherique, UMR CNRS 7331, University of Reims Champagne-Ardenne, F-51687, Reims Cedex 2, France.
| | - Alexander Alijah
- Groupe de Spectrometrie Moléculaire et Atmospherique, UMR CNRS 7331, University of Reims Champagne-Ardenne, F-51687, Reims Cedex 2, France.
| | - Vladimir Tyuterev
- Groupe de Spectrometrie Moléculaire et Atmospherique, UMR CNRS 7331, University of Reims Champagne-Ardenne, F-51687, Reims Cedex 2, France. and Quamer Laboratory, Tomsk State University, Tomsk, Russia
| |
Collapse
|
14
|
Yuen CH, Lapierre D, Gatti F, Kokoouline V, Tyuterev VG. The Role of Ozone Vibrational Resonances in the Isotope Exchange Reaction 16O 16O + 18O → 18O 16O + 16O: The Time-Dependent Picture. J Phys Chem A 2019; 123:7733-7743. [PMID: 31408343 DOI: 10.1021/acs.jpca.9b06139] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We consider the time-dependent dynamics of the isotope exchange reaction in collisions between an oxygen molecule and an oxygen atom: 16O16O + 18O → 16O18O + 16O. A theoretical approach using the multiconfiguration time-dependent Hartree method was employed to model the time evolution of the reaction. Two potential surfaces available in the literature were used in the calculations, and the results obtained with the two surfaces are compared with each other as well as with results of a previous theoretical time-independent approach. A good agreement for the reaction probabilities with the previous theoretical results is found. Comparing the results obtained using two potential energy surfaces allows us to understand the role of the reef/shoulder-like feature in the minimum energy path of the reaction in the isotope exchange process. Also, it was found that the distribution of final products of the reaction is highly anisotropic, which agrees with experimental observations and, at the same time, suggests that the family of approximated statistical approaches, assuming a randomized distribution over final exit channels, is not applicable to this case.
Collapse
Affiliation(s)
- Chi Hong Yuen
- Department of Physics , University of Central Florida , Orlando , Florida 32816 , United States
| | - David Lapierre
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, UFR Sciences , BP 1039, 51687 Reims Cedex 2 , France
| | - Fabien Gatti
- Institut de Sciences Moléculaires d'Orsay, UMR-CNRS 8214, Université Paris-Sud, Université Paris-Saclay , 91405 Orsay , France
| | - Viatcheslav Kokoouline
- Department of Physics , University of Central Florida , Orlando , Florida 32816 , United States
| | - Vladimir G Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, UFR Sciences , BP 1039, 51687 Reims Cedex 2 , France.,QUAMER Laboratory , Tomsk State University , 634000 Tomsk , Russia
| |
Collapse
|
15
|
Tyuterev VG, Barbe A, Jacquemart D, Janssen C, Mikhailenko SN, Starikova EN. Ab initio predictions and laboratory validation for consistent ozone intensities in the MW, 10 and 5 μm ranges. J Chem Phys 2019; 150:184303. [DOI: 10.1063/1.5089134] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vl. G. Tyuterev
- Tomsk State Research University, TSU, Tomsk 634050, Russia
- GSMA UMR CNRS 7331, UFR Sciences, Université de Reims, BP 1039, 51687 Reims, France
| | - A. Barbe
- GSMA UMR CNRS 7331, UFR Sciences, Université de Reims, BP 1039, 51687 Reims, France
| | - D. Jacquemart
- MONARIS, Sorbonne Université, CNRS, 75252 Paris, France
| | - C. Janssen
- LERMA-IPSL, Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, 75252 Paris, France
| | - S. N. Mikhailenko
- V.E. Zuev Institute of Atmospheric Optics, SB RAS, Tomsk 634055, Russia
| | - E. N. Starikova
- V.E. Zuev Institute of Atmospheric Optics, SB RAS, Tomsk 634055, Russia
| |
Collapse
|
16
|
Rey M, Chizhmakova IS, Nikitin AV, Tyuterev VG. Understanding global infrared opacity and hot bands of greenhouse molecules with low vibrational modes from first-principles calculations: the case of CF 4. Phys Chem Chem Phys 2018; 20:21008-21033. [PMID: 30070661 DOI: 10.1039/c8cp03252a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorine containing molecules have a particularly long atmospheric lifetime and their very big estimated global warming potentials are expected to rapidly increase in the future. This work is focused on the global theoretical prediction of infrared spectra of the tetrafluoromethane molecule that is considered as a potentially powerful greenhouse gas having the largest estimated lifetime of over 50 000 years in the atmosphere. The presence of relatively low vibrational frequencies makes the Boltzmann population of the excited levels important. Consequently, the "hot bands" corresponding to transitions among excited rovibrational states contribute significantly to the CF4 opacity in the infrared even at room temperature conditions but the existing laboratory data analyses are not sufficiently complete. In this work, we construct the first accurate and complete ab initio based line lists for CF4 in the range 0-4000 cm-1, containing rovibrational bands that are the most active in absorption. An efficient basis set compression method was applied to predict more than 700 new bands and subbands via variational nuclear motion calculations. We show that already at room temperature a quasi-continuum of overlapping weak lines appears in the CF4 infrared spectra due to the increasing density of bands and transitions. In order to converge the infrared opacity at room temperature, it was necessary to include a high rotational quantum number up to J = 80 resulting in 2 billion rovibrational transitions. In order to make the cross-section simulation faster, we have partitioned our data into two parts: (a) strong & medium line lists with lower energy levels for calculation of selective absorption features that can be used at various temperatures and (b) compressed "super-line" libraries of very weak transitions contributing to the quasi-continuum modelling. Comparisons with raw previously unassigned experimental spectra showed a very good accuracy for integrated absorbance in the entire range of the reported spectra predictions. The data obtained in this work will be made available through the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru) that contains ab initio born line lists and provides a user-friendly graphical interface for a fast simulation of the CF4 absorption cross-sections and radiance under various temperature conditions from 80 K to 400 K.
Collapse
Affiliation(s)
- Michaël Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687, Reims Cedex 2, France.
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Alexander Alijah
- GSMA, Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims Champagne-Ardenne, U.F.R. Sciences Exactes et Naturelles, Reims, France
| | - David Lapierre
- GSMA, Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims Champagne-Ardenne, U.F.R. Sciences Exactes et Naturelles, Reims, France
| | - Vladimir Tyuterev
- GSMA, Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims Champagne-Ardenne, U.F.R. Sciences Exactes et Naturelles, Reims, France
| |
Collapse
|
18
|
Guillon G, Honvault P, Kochanov R, Tyuterev V. First-Principles Computed Rate Constant for the O + O 2 Isotopic Exchange Reaction Now Matches Experiment. J Phys Chem Lett 2018; 9:1931-1936. [PMID: 29595990 DOI: 10.1021/acs.jpclett.8b00661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We show, by performing exact time-independent quantum molecular scattering calculations, that the quality of the ground electronic state global potential energy surface appears to be of utmost importance in accurately obtaining even as strongly averaged quantities as kinetic rate constants. The oxygen isotope exchange reaction, 18O + 32O2, motivated by the understanding of a complex long-standing problem of isotopic ozone anomalies in the stratosphere and laboratory experiments, is explored in this context. The thermal rate constant for this key reaction is now in quantitative agreement with all experimental data available to date. A significant recent progress at the frontier of three research domains, advanced electronic structure calculations, ultrasensitive spectroscopy, and quantum scattering calculations, has therefore permitted a breakthrough in the theoretical modeling of this crucial collision process from first principles.
Collapse
Affiliation(s)
- Grégoire Guillon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 21078 Dijon Cedex , France
| | - Pascal Honvault
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 21078 Dijon Cedex , France
| | - Roman Kochanov
- Laboratory of Quantum Mechanics and Radiative Processes , Tomsk State University , Tomsk , Russia
- Harvard-Smithsonian Center for Astrophysics , Atomic and Molecular Physics Division , Cambridge , Massachusetts 02138 , United States
| | - Vladimir Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique UMR CNRS 7331, UFR Sciences BP 1039, 51687 Reims Cedex 2 , France
| |
Collapse
|
19
|
Bulanin KM, Bulanin MO, Rudakova AV, Kolomijtsova TD, Shchepkin DN. Spectroscopic studies of ozone in cryosolutions: FT-IR spectra of 16O 3 in liquid nitrogen, oxygen, argon and krypton. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:385-392. [PMID: 29272809 DOI: 10.1016/j.saa.2017.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/05/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
We have measured and interpreted the IR spectra of ozone dissolved in liquid nitrogen, oxygen, argon, and krypton in the 650-4700cm-1 spectral region at 79-117K. Frequency shifts, band intensities and bandshapes of 22 spectral features of soluted ozone were analyzed. The bands of the А1 symmetry have a complex contour and possess an excess intensity with respect to the value of the purely vibrational transition moment. It was found that this effect is related to the manifestation of the Coriolis interaction. The bandshape distortion manifests itself as an additional intensity from the side of the В1 symmetry band being an intensity source in the case of the Coriolis interaction.
Collapse
Affiliation(s)
- Kirill M Bulanin
- Department of Physics, Saint-Petersburg State University, St-Petersburg, 198504, Russia; Laboratory "Photoactive Nanocomposite Materials", Saint-Petersburg State University, Saint-Petersburg 198504, Russia.
| | - Michael O Bulanin
- Department of Physics, Saint-Petersburg State University, St-Petersburg, 198504, Russia
| | - Aida V Rudakova
- Laboratory "Photoactive Nanocomposite Materials", Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | | | - Dmitrij N Shchepkin
- Department of Physics, Saint-Petersburg State University, St-Petersburg, 198504, Russia
| |
Collapse
|