1
|
Finney AR, Salvalaglio M. Properties of aqueous electrolyte solutions at carbon electrodes: effects of concentration and surface charge on solution structure, ion clustering and thermodynamics in the electric double layer. Faraday Discuss 2024; 249:334-362. [PMID: 37781909 DOI: 10.1039/d3fd00133d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Surfaces are able to control physical-chemical processes in multi-component solution systems and, as such, find application in a wide range of technological devices. Understanding the structure, dynamics and thermodynamics of non-ideal solutions at surfaces, however, is particularly challenging. Here, we use Constant Chemical Potential Molecular Dynamics (CμMD) simulations to gain insight into aqueous NaCl solutions in contact with graphite surfaces at high concentrations and under the effect of applied surface charges: conditions where mean-field theories describing interfaces cannot (typically) be reliably applied. We discover an asymmetric effect of surface charge on the electric double layer structure and resulting thermodynamic properties, which can be explained by considering the affinity of the surface for cations and anions and the cooperative adsorption of ions that occurs at higher concentrations. We characterise how the sign of the surface charge affects ion densities and water structure in the double layer and how the capacitance of the interface-a function of the electric potential drop across the double layer-is largely insensitive to the bulk solution concentration. Notably, we find that negatively charged graphite surfaces induce an increase in the size and concentration of extended liquid-like ion clusters confined to the double layer. Finally, we discuss how concentration and surface charge affect the activity coefficients of ions and water at the interface, demonstrating how electric fields in this region should be explicitly considered when characterising the thermodynamics of both solute and solvent at the solid/liquid interface.
Collapse
Affiliation(s)
- Aaron R Finney
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| |
Collapse
|
2
|
Shi K, Hu M, Huang P. Influences of Relative Humidity and Dwell Time on Silica/Graphene Adhesion Force of a Cone-Plane Contact. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12432-12440. [PMID: 36194826 DOI: 10.1021/acs.langmuir.2c01294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Graphene has exceptional electronic, mechanical, and thermal properties, and it is expected to have important applications in integrated circuits and other microelectronic fields. Its performances are greatly affected by surface adhesion force when it is used in a humid environment. In this paper, based on the law of variable water contact angle changing in the process of water vapor condensation, we established a cone-plane contact model, which is related to relative humidity and dwell time, to reveal the internal mechanism of the influence of relative humidity and dwell time on silica/graphene adhesion force. First, the silica/graphene adhesion force dependence of dwell time was measured by atomic force microscopy (AFM) at 45-85% RH. Then, the changing process of the meniscus between the AFM tip and the graphene surface was discussed, and the function of adhesion force with variables of dwell time and contact angle was established. Furthermore, the theoretical and experimental results were compared and analyzed. The results show that with the increase of relative humidity and dwell time, the capillary condensation increases, but the water contact angle of the cone material decreases. This causes the adhesion force to increase first and then decrease after it reaches a threshold value. Furthermore, the variable water contact angle of the graphene surface increases, but the adhesion force decreases gradually with the increase of surface water film. The theoretical results are in good agreement with the experimental results.
Collapse
Affiliation(s)
- Kai Shi
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510640, China
| | - Manfeng Hu
- School of Electrical Engineering, Guangzhou Railway Polytechnic, Guangzhou510430, China
| | - Ping Huang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510640, China
| |
Collapse
|
3
|
De Maio F, Rosa E, Perini G, Augello A, Niccolini B, Ciaiola F, Santarelli G, Sciandra F, Bozzi M, Sanguinetti M, Sali M, De Spirito M, Delogu G, Palmieri V, Papi M. 3D-printed graphene polylactic acid devices resistant to SARS-CoV-2: Sunlight-mediated sterilization of additive manufactured objects. CARBON 2022; 194:34-41. [PMID: 35313599 PMCID: PMC8926154 DOI: 10.1016/j.carbon.2022.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 05/24/2023]
Abstract
Additive manufacturing has played a crucial role in the COVID-19 global emergency allowing for rapid production of medical devices, indispensable tools for hospitals, or personal protection equipment. However, medical devices, especially in nosocomial environments, represent high touch surfaces prone to viral infection and currently used filaments for 3D printing can't inhibit transmission of virus [1]. Graphene-family materials are capable of reinforcing mechanical, optical and thermal properties of 3D printed constructs. In particular, graphene can adsorb near-infrared light with high efficiency. Here we demonstrate that the addition of graphene nanoplatelets to PLA filaments (PLA-G) allows the creation of 3D-printed devices that can be sterilized by near-infrared light exposure at power density analog to sunlight. This method has been used to kill SARS-CoV-2 viral particles on the surface of 3D printed PLA-G by 3 min of exposure. 3D-printed PLA-G is highly biocompatible and can represent the ideal material for the production of sterilizable personal protective equipment and daily life objects intended for multiple users.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Enrico Rosa
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
| | - Alberto Augello
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
| | - Francesca Ciaiola
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Giulia Santarelli
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", (SCITEC)-CNR, Roma, Italy
| | - Manuela Bozzi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
- Mater Olbia Hospital, Olbia, Italy
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185, Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
| |
Collapse
|
4
|
Priyadarsini A, Mallik BS. Comparative first principles-based molecular dynamics study of catalytic mechanism and reaction energetics of water oxidation reaction on 2D-surface. J Comput Chem 2021; 42:1138-1149. [PMID: 33851446 DOI: 10.1002/jcc.26528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023]
Abstract
The study of the water-splitting process, which can proceed in 2e- as well as 4e- pathway, reveals that the process is entirely an uphill process, and the third step, that is, the oxooxo bond formation is the rate-determining step. The kinetic barrier of the oxygen evolution reaction (OER) on the 2D material catalysts in the presence of explicit solvents is scarcely studied. Here, we investigate the dynamics of the OER on the undoped graphene and the activation energy barrier of each step using first principles molecular dynamics simulations. Here we provide a detailed analysis of the kinetics of all the 4e- transfer steps of OER on the graphene surface. We also compare the accuracy of one of the density functional theory (DFT) functionals and density functional based tight binding (DFTB) method in explaining the OER steps. The comparative study reveals that DFTB can be used for performing metadynamics simulations quipped with much less computational cost than DFT functionals. By both Perdew-Burke-Ernzerhof and DFTB methods, the third step is revealed to be the rate-determining step with an energy barrier of 21.19 ± 0.51 and 20.23 ± 0.20 kcal mol-1 , respectively. DFTB gives an impression of being successful in predicting the energy barriers of OER in 4e- transfer pathway and comparable to the DFT method, and we would like to extend the use of DFTB for further studies with a sizable and complex system.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
5
|
Goujon F, Ghoufi A, Malfreyt P. Associated molecular liquids at the graphene monolayer interface. J Chem Phys 2021; 154:104504. [PMID: 33722040 DOI: 10.1063/5.0042438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We report molecular simulations of the interaction between a graphene sheet and different liquids such as water, ethanol, and ethylene glycol. We describe the structural arrangements at the graphene interface in terms of density profiles, number of hydrogen bonds (HBs), and local structuration in neighboring layers close to the surface. We establish the formation of a two-dimensional HB network in the layer closest to the graphene. We also calculate the interfacial tension of liquids with a graphene monolayer and its profile along the direction normal to the graphene to rationalize and quantify the strengthening of the intermolecular interactions in the liquid due to the presence of the surface.
Collapse
Affiliation(s)
- Florent Goujon
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Aziz Ghoufi
- Université de Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000 Rennes, France
| | - Patrice Malfreyt
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| |
Collapse
|
6
|
Pham LN, Walsh TR. Force fields for water-surface interaction: is reproduction of the experimental water contact angle enough? Chem Commun (Camb) 2021; 57:3355-3358. [PMID: 33665652 DOI: 10.1039/d1cc00426c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new protocol based on quantum chemical calculations and molecular dynamics simulations is proposed to revisit water-MoS2 interfacial force fields (FFs). The accurate reproduction of experimental water contact angles is suggested to be insufficient to ensure reliable FFs for recovering structural properties of the interfacial solvent. As an example, this protocol is used to develop a new set of FF parameters to both capture interfacial structural phenomena at the interface between water and MoS2 and recover experimental water contact angle data. This approach can be applied to any interface where contact angle data are available.
Collapse
Affiliation(s)
- Le Nhan Pham
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | | |
Collapse
|
7
|
Shi J, Zou Y, Wang JX, Zeng XF, Chu GW, Sun BC, Wang D, Chen JF. Investigation on Designing Meltblown Fibers for the Filtering Layer of a Mask by Cross-Scale Simulations. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie Shi
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanzuo Zou
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiao-Fei Zeng
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guang-Wen Chu
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bao-Chang Sun
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dan Wang
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian-Feng Chen
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Rogers TR, Wang F. Accurate MP2-based force fields predict hydration free energies for simple alkanes and alcohols in good agreement with experiments. J Chem Phys 2020; 153:244505. [PMID: 33380083 PMCID: PMC7771999 DOI: 10.1063/5.0035032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Force fields for four small molecules, methane, ethane, methanol, and ethanol, were created by force matching MP2 gradients computed with triple-zeta-quality basis sets using the Adaptive Force Matching method. Without fitting to any experimental properties, the force fields created were able to predict hydration free energies, enthalpies of hydration, and diffusion constants in excellent agreements with experiments. The root mean square error for the predicted hydration free energies is within 1 kJ/mol of experimental measurements of Ben-Naim et al. [J. Chem. Phys. 81(4), 2016-2027 (1984)]. The good prediction of hydration free energies is particularly noteworthy, as it is an important fundamental property. Similar hydration free energies of ethane relative to methane and of ethanol relative to methanol are attributed to a near cancellation of cavitation penalty and favorable contributions from dispersion and Coulombic interactions as a result of the additional methyl group.
Collapse
Affiliation(s)
- T. Ryan Rogers
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Feng Wang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
9
|
Shan X, Zhang H, Liu C, Yu L, Di Y, Zhang X, Dong L, Gan Z. Reusable Self-Sterilization Masks Based on Electrothermal Graphene Filters. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56579-56586. [PMID: 33259195 DOI: 10.1021/acsami.0c16754] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Surgical mask is recommended by the World Health Organization for personal protection against disease transmission. However, most of the surgical masks on the market are disposable that cannot be self-sterilized for reuse. Thus, when confronting the global public health crisis, a severe shortage of mask resource is inevitable. In this paper, a novel low-cost electrothermal mask with excellent self-sterilization performance and portability is reported to overcome this shortage. First, a flexible, ventilated, and conductive cloth tape is patterned and adhered to the surface of a filter layer made of melt-blown nonwoven fabrics (MNF), which functions as interdigital electrodes. Then, a graphene layer with premier electric and thermal conductivity is coated onto the MNF. Operating under a low voltage of 3 V, the graphene-modified MNF (mod-MNF) can quickly generate large amounts of heat to achieve a high temperature above 80 °C, which can kill the majority of known viruses attached to the filter layer and the mask surface. Finally, the optimized graphene-modified masks based on the mod-MNF filter retain a relatively high particulate matter (PM) removal efficiency and a low-pressure drop. Moreover, the electrothermal masks can maintain almost the same PM removal efficiency over 10 times of electrifying, suggesting its outstanding reusability.
Collapse
Affiliation(s)
- Xiaoli Shan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Han Zhang
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P. R. China
| | - Cihui Liu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Liyan Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yunsong Di
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Xiaowei Zhang
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P. R. China
| | - Lifeng Dong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhixing Gan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
10
|
Jiang L, Rogers DM, Hirst JD, Do H. Force Fields for Macromolecular Assemblies Containing Diketopyrrolopyrrole and Thiophene. J Chem Theory Comput 2020; 16:5150-5162. [DOI: 10.1021/acs.jctc.0c00399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ling Jiang
- Department of Chemical and Environmental Engineering, University of Nottingham—Ningbo China, Ningbo 315100, China
| | - David M. Rogers
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Hainam Do
- Department of Chemical and Environmental Engineering, University of Nottingham—Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham—Ningbo China, Ningbo 315042, China
| |
Collapse
|
11
|
Yuan Y, Ma Z, Wang F. Leveraging local MP2 to reduce basis set superposition errors: An efficient first-principles based force-field for carbon dioxide. J Chem Phys 2019; 151:184501. [PMID: 31731863 DOI: 10.1063/1.5124811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pairwise additive model potentials for CO2 were developed by fitting to gradients computed with the local second order Møller Plesset Perturbation theory (LMP2) method, with and without consideration of 3-body dispersion using adaptive force matching. Without fitting to experiments, all models gave good predictions of properties of CO2, such as the density-temperature diagram, diffusion constants, and radial distribution functions. For the prediction of vibrational spectra, the inclusion of a bond-bond coupling term has been shown to be important. The CO2 models developed only have pairwise additive terms, thus allowing microsecond time scale simulations to be performed with practical computational cost. LMP2 performed significantly better than second order Møller Plesset Perturbation theory (MP2) for the development of the CO2 model. This is attributed to the appreciable reduction in the basis set superposition error when the localized method was used. It is argued that LMP2 is a more appropriate method than MP2 for force matching for systems where the basis set superposition error is large.
Collapse
Affiliation(s)
- Ying Yuan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Zhonghua Ma
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Feng Wang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
12
|
Ramos-Alvarado B. Water wettability of graphene and graphite, optimization of solid-liquid interaction force fields, and insights from mean-field modeling. J Chem Phys 2019; 151:114701. [DOI: 10.1063/1.5118888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bladimir Ramos-Alvarado
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
13
|
Awang T, Thangsan P, Luksirikul P, Japrung D, Pongprayoon P. The adsorption of glycated human serum albumin-selective aptamer onto a graphene sheet: simulation studies. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1605599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tadsanee Awang
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Thailand
| | - Poomsith Thangsan
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Thailand
| | - Patraporn Luksirikul
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Thailand
| | - Deanpen Japrung
- National Science and Technology Development Agency, National Nanotechnology Center, Thailand Science Park, Pathumthani, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
14
|
Ling D, Zhang M, Song J, Wei D. Calculated Terahertz Spectra of Glycine Oligopeptide Solutions Confined in Carbon Nanotubes. Polymers (Basel) 2019; 11:E385. [PMID: 30960369 PMCID: PMC6419217 DOI: 10.3390/polym11020385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022] Open
Abstract
To reduce the intense terahertz (THz) wave absorption of water and increase the signal-to-noise ratio, the THz spectroscopy detection of biomolecules usually operates using the nanofluidic channel technologies in practice. The effects of confinement due to the existence of nanofluidic channels on the conformation and dynamics of biomolecules are well known. However, studies of confinement effects on the THz spectra of biomolecules are still not clear. In this work, extensive all-atom molecular dynamics simulations are performed to investigate the THz spectra of the glycine oligopeptide solutions in free and confined environments. THz spectra of the oligopeptide solutions confined in carbon nanotubes (CNTs) with different radii are calculated and compared. Results indicate that with the increase of the degree of confinement (the reverse of the radius of CNT), the THz absorption coefficient decreases monotonically. By analyzing the diffusion coefficient and dielectric relaxation dynamics, the hydrogen bond life, and the vibration density of the state of the water molecules in free solution and in CNTs, we conclude that the confinement effects on the THz spectra of biomolecule solutions are mainly to slow down the dynamics of water molecules and hence to reduce the THz absorption of the whole solution in confined environments.
Collapse
Affiliation(s)
- Dongxiong Ling
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, Guangdong, China.
| | - Mingkun Zhang
- Chongqing Engineering Research Center of High-Resolution and 3D Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Jianxun Song
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, Guangdong, China.
| | - Dongshan Wei
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, Guangdong, China.
- Chongqing Engineering Research Center of High-Resolution and 3D Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
15
|
Brandenburg JG, Zen A, Fitzner M, Ramberger B, Kresse G, Tsatsoulis T, Grüneis A, Michaelides A, Alfè D. Physisorption of Water on Graphene: Subchemical Accuracy from Many-Body Electronic Structure Methods. J Phys Chem Lett 2019; 10:358-368. [PMID: 30615460 DOI: 10.1021/acs.jpclett.8b03679] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wet carbon interfaces are ubiquitous in the natural world and exhibit anomalous properties, which could be exploited by emerging technologies. However, progress is limited by lack of understanding at the molecular level. Remarkably, even for the most fundamental system (a single water molecule interacting with graphene), there is no consensus on the nature of the interaction. We tackle this by performing an extensive set of complementary state-of-the-art computer simulations on some of the world's largest supercomputers. From this effort a consensus on the water-graphene interaction strength has been obtained. Our results have significant impact for the physical understanding, as they indicate that the interaction is weaker than predicted previously. They also pave the way for more accurate and reliable studies of liquid water at carbon interfaces.
Collapse
Affiliation(s)
- Jan Gerit Brandenburg
- Department of Physics and Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology , 17-19 Gordon Street , London WC1H 0AH , United Kingdom
| | - Andrea Zen
- Department of Physics and Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology , 17-19 Gordon Street , London WC1H 0AH , United Kingdom
| | - Martin Fitzner
- Department of Physics and Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology , 17-19 Gordon Street , London WC1H 0AH , United Kingdom
| | - Benjamin Ramberger
- University of Vienna , Faculty of Physics and Center for Computational Materials Sciences , Sensengasse 8/12 , 1090 Wien , Austria
| | - Georg Kresse
- University of Vienna , Faculty of Physics and Center for Computational Materials Sciences , Sensengasse 8/12 , 1090 Wien , Austria
| | - Theodoros Tsatsoulis
- Institute for Theoretical Physics , Vienna University of Technology , Wiedner Hauptstrasse 8-10 , 1040 Vienna , Austria
- Max Planck Institute for Solid State Research , Heisenbergstrasse 1 , 70569 Stuttgart , Germany
| | - Andreas Grüneis
- Institute for Theoretical Physics , Vienna University of Technology , Wiedner Hauptstrasse 8-10 , 1040 Vienna , Austria
- Max Planck Institute for Solid State Research , Heisenbergstrasse 1 , 70569 Stuttgart , Germany
| | - Angelos Michaelides
- Department of Physics and Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology , 17-19 Gordon Street , London WC1H 0AH , United Kingdom
| | - Dario Alfè
- Thomas Young Centre and London Centre for Nanotechnology , 17-19 Gordon Street , London WC1H 0AH , United Kingdom
- Department of Earth Sciences , University College London , Gower Street , London WC1E 6BT , United Kingdom
- Dipartimento di Fisica Ettore Pancini , Università di Napoli Federico II , Monte S. Angelo, I-80126 Napoli , Italy
| |
Collapse
|
16
|
Wu L, Han Y, Zhang Q, Zhao S. Effect of external electric field on nanobubbles at the surface of hydrophobic particles during air flotation. RSC Adv 2019; 9:1792-1798. [PMID: 35516131 PMCID: PMC9059776 DOI: 10.1039/c8ra08935c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
In this paper, the effect of external electric field on nanobubbles adsorbed on the surface of hydrophobic particles during air flotation was studied by molecular dynamics simulations. The gas density distribution, diffusion coefficient, viscosity, and the change of the angle and number distribution of hydrogen bonds in the system with different amounts of gas molecules were calculated and compared with the results without an external electric field. The results show that the external electric field can make the size of the bubbles smaller. The diffusion coefficient of the gas increases and the viscosity of the system decreases when the external electric field is applied, which contribute to the reduction of the size of the nanobubbles. At the same time, comparing with the results under no external electric field, the angle of hydrogen bonding under the external electric field will increase, and the proportion of water molecules containing more hydrogen bonds will reduce, which further explains the reason why the external electric field reduces the viscosity. The conclusions of this paper demonstrate at the micro level that the external electric field can enhance the efficiency of air-floating technology for the separation of hydrophobic particles, which may provide meaningful theoretical guidance for the application and optimization of electric field-enhanced air-floating technology in practice.
Collapse
Affiliation(s)
- Leichao Wu
- Measurement Technology and Instrumentation Key Laboratory of Hebei Province, School of Electrical Engineering, Yanshan University Qinhuangdao 066004 P. R. China
| | - Yong Han
- Measurement Technology and Instrumentation Key Laboratory of Hebei Province, School of Electrical Engineering, Yanshan University Qinhuangdao 066004 P. R. China
| | - Qianrui Zhang
- Measurement Technology and Instrumentation Key Laboratory of Hebei Province, School of Electrical Engineering, Yanshan University Qinhuangdao 066004 P. R. China
| | - Shuai Zhao
- Measurement Technology and Instrumentation Key Laboratory of Hebei Province, School of Electrical Engineering, Yanshan University Qinhuangdao 066004 P. R. China
| |
Collapse
|
17
|
Prydatko AV, Belyaeva LA, Jiang L, Lima LMC, Schneider GF. Contact angle measurement of free-standing square-millimeter single-layer graphene. Nat Commun 2018; 9:4185. [PMID: 30305628 PMCID: PMC6180012 DOI: 10.1038/s41467-018-06608-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/11/2018] [Indexed: 01/17/2023] Open
Abstract
Square millimeters of free-standing graphene do not exist per se because of thermal fluctuations in two-dimensional crystals and their tendency to collapse during the detachment from the substrate. Here we form millimeter-scale freely suspended graphene by injecting an air bubble underneath a graphene monolayer floating at the water-air interface, which allowed us to measure the contact angle on fully free-standing non-contaminated graphene. A captive bubble measurement shows that free-standing clean graphene is hydrophilic with a contact angle of 42° ± 3°. The proposed design provides a simple tool to probe and explore the wettability of two-dimensional materials in free-standing geometries and will expand our perception of two-dimensional materials technologies from microscopic to now millimeter scales.
Collapse
Affiliation(s)
- Anna V Prydatko
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Liubov A Belyaeva
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Lin Jiang
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Lia M C Lima
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Grégory F Schneider
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
18
|
Rajegowda R, Kannam SK, Hartkamp R, Sathian SP. Thermophoretically driven water droplets on graphene and boron nitride surfaces. NANOTECHNOLOGY 2018; 29:215401. [PMID: 29498625 DOI: 10.1088/1361-6528/aab3a3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.
Collapse
Affiliation(s)
- Rakesh Rajegowda
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | | | | | | |
Collapse
|
19
|
Liu J, Lai CY, Zhang YY, Chiesa M, Pantelides ST. Water wettability of graphene: interplay between the interfacial water structure and the electronic structure. RSC Adv 2018; 8:16918-16926. [PMID: 35540542 PMCID: PMC9080294 DOI: 10.1039/c8ra03509a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 12/14/2022] Open
Abstract
Wetting phenomena are ubiquitous and impact a wide range of applications. Simulations so far have largely relied on classical potentials. Here, we report the development of an approach that combines density-functional theory (DFT)-based calculations with classical wetting theory that allows practical but sufficiently accurate determination of the water contact angle (WCA). As a benchmark, we apply the approach to the graphene and graphite surfaces that recently received considerable attention. The results agree with and elucidate the experimental data. For metal-supported graphene where electronic interactions play a major role, we demonstrate that doping of graphene by the metal substrate significantly alters the wettability. In addition to theory, we report new experimental measurements of the WCA and the force of adhesion that corroborate the theoretical results. We demonstrate a correlation between the force of adhesion and WCA, and the use of the atomic force microscope (AFM) technique as an alternative measure for wettability at the nanoscale. The present work not only provides a detailed understanding of the wettability of graphene, including the role of electrons, but also sets the stage for studying the wettability alteration mechanism when sufficiently accurate force fields may not be available.
Collapse
Affiliation(s)
- Jian Liu
- Department of Physics and Astronomy, Vanderbilt University Tennessee 37235 USA
| | - Chia-Yun Lai
- Laboratory for Energy and Nano-Sciences, Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
| | - Yu-Yang Zhang
- Department of Physics and Astronomy, Vanderbilt University Tennessee 37235 USA
| | - Matteo Chiesa
- Laboratory for Energy and Nano-Sciences, Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
| | - Sokrates T Pantelides
- Department of Physics and Astronomy, Vanderbilt University Tennessee 37235 USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University Tennessee 37235 USA
| |
Collapse
|
20
|
Qiu Y, Lupi L, Molinero V. Is Water at the Graphite Interface Vapor-like or Ice-like? J Phys Chem B 2018; 122:3626-3634. [PMID: 29298058 DOI: 10.1021/acs.jpcb.7b11476] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Graphitic surfaces are the main component of soot, a major constituent of atmospheric aerosols. Experiments indicate that soots of different origins display a wide range of abilities to heterogeneously nucleate ice. The ability of pure graphite to nucleate ice in experiments, however, seems to be almost negligible. Nevertheless, molecular simulations with the monatomic water model mW with water-carbon interactions parameterized to reproduce the experimental contact angle of water on graphite predict that pure graphite nucleates ice. According to classical nucleation theory, the ability of a surface to nucleate ice is controlled by the binding free energy between ice immersed in liquid water and the surface. To establish whether the discrepancy in freezing efficiencies of graphite in mW simulations and experiments arises from the coarse resolution of the model or can be fixed by reparameterization, it is important to elucidate the contributions of the water-graphite, water-ice, and ice-water interfaces to the free energy, enthalpy, and entropy of binding for both water and the model. Here we use thermodynamic analysis and free energy calculations to determine these interfacial properties. We demonstrate that liquid water at the graphite interface is not ice-like or vapor-like: it has similar free energy, entropy, and enthalpy as water in the bulk. The thermodynamics of the water-graphite interface is well reproduced by the mW model. We find that the entropy of binding between graphite and ice is positive and dominated, in both experiments and simulations, by the favorable entropy of reducing the ice-water interface. Our analysis indicates that the discrepancy in freezing efficiencies of graphite in experiments and the simulations with mW arises from the inability of the model to simultaneously reproduce the contact angle of liquid water on graphite and the free energy of the ice-graphite interface. This transferability issue is intrinsic to the resolution of the model, and arises from its lack of rotational degrees of freedom.
Collapse
Affiliation(s)
- Yuqing Qiu
- Department of Chemistry , The University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Laura Lupi
- Department of Chemistry , The University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Valeria Molinero
- Department of Chemistry , The University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
21
|
Bejagam KK, Singh S, Deshmukh SA. Development of non-bonded interaction parameters between graphene and water using particle swarm optimization. J Comput Chem 2017; 39:721-734. [PMID: 29266458 DOI: 10.1002/jcc.25141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 01/21/2023]
Abstract
New Lennard-Jones parameters have been developed to describe the interactions between atomistic model of graphene, represented by REBO potential, and five commonly used all-atom water models, namely SPC, SPC/E, SPC/Fw, SPC/Fd, and TIP3P/Fs by employing particle swarm optimization (PSO) method. These new parameters were optimized to reproduce the macroscopic contact angle of water on a graphene sheet. The calculated line tension was in the order of 10-11 J/m for the droplets of all water models. Our molecular dynamics simulations indicate the preferential orientation of water molecules near graphene-water interface with one OH bond pointing toward the graphene surface. Detailed analysis of simulation trajectories reveals the presence of water molecules with ≤∼1, ∼2, and ∼4 hydrogen bonds at the surface of air-water interface, graphene-water interface, and bulk region of the water droplet, respectively. Presence of water molecules with ≤∼1 and ∼2 hydrogen bonds suggest the existence of water clusters of different sizes at these interfaces. The trends observed in the libration, bending, and stretching bands of the vibrational spectra are closely associated with these structural features of water. The inhomogeneity in hydrogen bond network of water at the air-water and graphene-water interface is manifested by broadening of the peaks in the libration band for water present at these interfaces. The stretching band for the molecules in water droplet shows a blue shift as compared to the pure bulk water, which conjecture the presence of weaker hydrogen bond network in a droplet. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karteek K Bejagam
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, 24061
| | - Samrendra Singh
- Case New Holland Industrial, 6900 Veterans Blvd, Burr Ridge, Illinois, 60527
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, 24061
| |
Collapse
|