1
|
Patra SK, Randolph N, Kuhlman B, Dieckhaus H, Betts L, Douglas J, Wills PR, Carter CW. Aminoacyl-tRNA synthetase urzymes optimized by deep learning behave as a quasispecies. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2025; 12:024701. [PMID: 40290414 PMCID: PMC12033045 DOI: 10.1063/4.0000294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025]
Abstract
Protein design plays a key role in our efforts to work out how genetic coding began. That effort entails urzymes. Urzymes are small, conserved excerpts from full-length aminoacyl-tRNA synthetases that remain active. Urzymes require design to connect disjoint pieces and repair naked nonpolar patches created by removing large domains. Rosetta allowed us to create the first urzymes, but those urzymes were only sparingly soluble. We could measure activity, but it was hard to concentrate those samples to levels required for structural biology. Here, we used the deep learning algorithms ProteinMPNN and AlphaFold2 to redesign a set of optimized LeuAC urzymes derived from leucyl-tRNA synthetase. We select a balanced, representative subset of eight variants for testing using principal component analysis. Most tested variants are much more soluble than the original LeuAC. They also span a range of catalytic proficiency and amino acid specificity. The data enable detailed statistical analyses of the sources of both solubility and specificity. In that way, we show how to begin to unwrap the elements of protein chemistry that were hidden within the neural networks. Deep learning networks have thus helped us surmount several vexing obstacles to further investigations into the nature of ancestral proteins. Finally, we discuss how the eight variants might resemble a sample drawn from a population similar to one subject to natural selection.
Collapse
Affiliation(s)
- Sourav Kumar Patra
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA
| | - Nicholas Randolph
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | - Laurie Betts
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA
| | - Jordan Douglas
- Department of Physics, University of Auckland, Auckland, New Zealand
| | - Peter R. Wills
- Department of Physics, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
2
|
Carter CW, Phillips GN. Whither the protein landscape? STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2025; 12:010401. [PMID: 39917080 PMCID: PMC11802186 DOI: 10.1063/4.0000291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/09/2025]
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7620, USA
| | - George N Phillips
- Departments of Biosciences and Chemistry, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
3
|
Tang GQ, Hu H, Douglas J, Carter C. Primordial aminoacyl-tRNA synthetases preferred minihelices to full-length tRNA. Nucleic Acids Res 2024; 52:7096-7111. [PMID: 38783009 PMCID: PMC11229368 DOI: 10.1093/nar/gkae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Aminoacyl-tRNA synthetases (AARS) and tRNAs translate the genetic code in all living cells. Little is known about how their molecular ancestors began to enforce the coding rules for the expression of their own genes. Schimmel et al. proposed in 1993 that AARS catalytic domains began by reading an 'operational' code in the acceptor stems of tRNA minihelices. We show here that the enzymology of an AARS urzyme•TΨC-minihelix cognate pair is a rich in vitro realization of that idea. The TΨC-minihelixLeu is a very poor substrate for full-length Leucyl-tRNA synthetase. It is a superior RNA substrate for the corresponding urzyme, LeuAC. LeuAC active-site mutations shift the choice of both amino acid and RNA substrates. AARS urzyme•minihelix cognate pairs are thus small, pliant models for the ancestral decoding hardware. They are thus an ideal platform for detailed experimental study of the operational RNA code.
Collapse
Affiliation(s)
- Guo Qing Tang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Hao Hu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Jordan Douglas
- Department of Physics, The University of Auckland, New Zealand
- Centre for Computational Evolution, University of Auckland, New Zealand
- Department of Computer Science, The University of Auckland, New Zealand
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
4
|
Tang GQ, Elder JJH, Douglas J, Carter CW. Domain acquisition by class I aminoacyl-tRNA synthetase urzymes coordinated the catalytic functions of HVGH and KMSKS motifs. Nucleic Acids Res 2023; 51:8070-8084. [PMID: 37470821 PMCID: PMC10450160 DOI: 10.1093/nar/gkad590] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Leucyl-tRNA synthetase (LeuRS) is a Class I aminoacyl-tRNA synthetase (aaRS) that synthesizes leucyl-tRNAleu for codon-directed protein synthesis. Two signature sequences, HxGH and KMSKS help stabilize transition-states for amino acid activation and tRNA aminoacylation by all Class I aaRS. Separate alanine mutants of each signature, together with the double mutant, behave in opposite ways in Pyrococcus horikoshii LeuRS and the 129-residue urzyme ancestral model generated from it (LeuAC). Free energy coupling terms, Δ(ΔG‡), for both reactions are large and favourable for LeuRS, but unfavourable for LeuAC. Single turnover assays with 32Pα-ATP show correspondingly different internal products. These results implicate domain motion in catalysis by full-length LeuRS. The distributed thermodynamic cycle of mutational changes authenticates LeuAC urzyme catalysis far more convincingly than do single point mutations. Most importantly, the evolutionary gain of function induced by acquiring the anticodon-binding (ABD) and multiple insertion modules in the catalytic domain appears to be to coordinate the catalytic function of the HxGH and KMSKS signature sequences. The implication that backbone elements of secondary structures achieve a major portion of the overall transition-state stabilization by LeuAC is also consistent with coevolution of the genetic code and metabolic pathways necessary to produce histidine and lysine sidechains.
Collapse
Affiliation(s)
- Guo Qing Tang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Jessica J H Elder
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Jordan Douglas
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
- Department of Physics, The University of Auckland, New Zealand
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
5
|
Chandrasekaran SN, Das J, Dokholyan NV, Carter CW. Microcalorimetry reveals multi-state thermal denaturation of G. stearothermophilus tryptophanyl-tRNA synthetase. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:044301. [PMID: 37476003 PMCID: PMC10356175 DOI: 10.1063/4.0000181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
Mechanistic studies of Geobacillus stearothermophilus tryptophanyl-tRNA synthetase (TrpRS) afford an unusually detailed description-the escapement mechanism-for the distinct steps coupling catalysis to domain motion, efficiently converting the free energy of ATP hydrolysis into biologically useful alternative forms of information and work. Further elucidation of the escapement mechanism requires understanding thermodynamic linkages between domain configuration and conformational stability. To that end, we compare experimental thermal melting of fully liganded and apo TrpRS with a computational simulation of the melting of its fully liganded form. The simulation also provides important structural cameos at successively higher temperatures, enabling more confident interpretation. Experimental and simulated melting both proceed through a succession of three transitions at successively higher temperature. The low-temperature transition occurs at approximately the growth temperature of the organism and so may be functionally relevant but remains too subtle to characterize structurally. Structural metrics from the simulation imply that the two higher-temperature transitions entail forming a molten globular state followed by unfolding of secondary structures. Ligands that stabilize the enzyme in a pre-transition (PreTS) state compress the temperature range over which these transitions occur and sharpen the transitions to the molten globule and fully denatured states, while broadening the low-temperature transition. The experimental enthalpy changes provide a key parameter necessary to convert changes in melting temperature of combinatorial mutants into mutationally induced conformational free energy changes. The TrpRS urzyme, an excerpted model representing an early ancestral form, containing virtually the entire catalytic apparatus, remains largely intact at the highest simulated temperatures.
Collapse
Affiliation(s)
| | - Jhuma Das
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology and Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Charles W. Carter
- Department of Biophysics and Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
6
|
Weinreb V, Weinreb G, Carter CW. High-throughput thermal denaturation of tryptophanyl-tRNA synthetase combinatorial mutants reveals high-order energetic coupling determinants of conformational stability. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:044304. [PMID: 37637481 PMCID: PMC10449480 DOI: 10.1063/4.0000182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023]
Abstract
Landscape descriptions provide a framework for identifying functionally significant dynamic linkages in proteins but cannot supply details. Rate measurements of combinatorial mutations can implicate dynamic linkages in catalysis. A major difficulty is filtering dynamic linkages from the vastly more numerous static interactions that stabilize domain folding. The Geobacillus stearothermophilus (TrpRS) D1 switch is such a dynamic packing motif; it links domain movement to catalysis and specificity. We describe Thermofluor and far UV circular dichroism melting curves for all 16 D1 switch variants to determine their higher-order impact on unliganded TrpRS stability. A prominent transition at intermediate temperatures in TrpRS thermal denaturation is molten globule formation. Combinatorial analysis of thermal melting transcends the protein landscape in four significant respects: (i) bioinformatic methods identify dynamic linkages from coordinates of multiple conformational states. (ii) Relative mutant melting temperatures, δTM, are proportional to free energy changes. (iii) Structural analysis of thermal melting implicates unexpected coupling between the D1 switch packing and regions of high local frustration. Those segments develop molten globular characteristics at the point of greatest complementarity to the chemical transition state and are the first TrpRS structures to melt. (iv) Residue F37 stabilizes both native and molten globular states; its higher-order interactions modify the relative intrinsic impacts of mutations to other D1 switch residues from those estimated for single point mutants. The D1 switch is a central component of an escapement mechanism essential to free energy transduction. These conclusions begin to relate the escapement mechanism to differential TrpRS conformational stabilities.
Collapse
Affiliation(s)
- Violetta Weinreb
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA
| | | | - Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA
| |
Collapse
|
7
|
Carter CW, Popinga A, Bouckaert R, Wills PR. Multidimensional Phylogenetic Metrics Identify Class I Aminoacyl-tRNA Synthetase Evolutionary Mosaicity and Inter-Modular Coupling. Int J Mol Sci 2022; 23:ijms23031520. [PMID: 35163448 PMCID: PMC8835825 DOI: 10.3390/ijms23031520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
The role of aminoacyl-tRNA synthetases (aaRS) in the emergence and evolution of genetic coding poses challenging questions concerning their provenance. We seek evidence about their ancestry from curated structure-based multiple sequence alignments of a structurally invariant “scaffold” shared by all 10 canonical Class I aaRS. Three uncorrelated phylogenetic metrics—mutation frequency, its uniformity, and row-by-row cladistic congruence—imply that the Class I scaffold is a mosaic assembled from successive genetic sources. Metrics for different modules vary in accordance with their presumed functionality. Sequences derived from the ATP– and amino acid– binding sites exhibit specific two-way coupling to those derived from Connecting Peptide 1, a third module whose metrics suggest later acquisition. The data help validate: (i) experimental fragmentations of the canonical Class I structure into three partitions that retain catalytic activities in proportion to their length; and (ii) evidence that the ancestral Class I aaRS gene also encoded a Class II ancestor in frame on the opposite strand. A 46-residue Class I “protozyme” roots the Class I tree prior to the adaptive radiation of the Rossmann dinucleotide binding fold that refined substrate discrimination. Such rooting implies near simultaneous emergence of genetic coding and the origin of the proteome, resolving a conundrum posed by previous inferences that Class I aaRS evolved after the genetic code had been implemented in an RNA world. Further, pinpointing discontinuous enhancements of aaRS fidelity establishes a timeline for the growth of coding from a binary amino acid alphabet.
Collapse
Affiliation(s)
- Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
- Correspondence: ; Tel.: +1-919-966-3263
| | - Alex Popinga
- Centre for Computational Evolution, University of Auckland, PB 92019, Auckland 1142, New Zealand; (A.P.); (R.B.)
| | - Remco Bouckaert
- Centre for Computational Evolution, University of Auckland, PB 92019, Auckland 1142, New Zealand; (A.P.); (R.B.)
| | - Peter R. Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, PB 92019, Auckland 1142, New Zealand;
| |
Collapse
|
8
|
Fan S, Lv G, Feng X, Wu G, Jin Y, Yan M, Yang Z. Structural insights into the specific interaction between Geobacillus stearothermophilus tryptophanyl-tRNA synthetase and antimicrobial Chuangxinmycin. J Biol Chem 2022; 298:101580. [PMID: 35031320 PMCID: PMC8814664 DOI: 10.1016/j.jbc.2022.101580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/29/2022] Open
Abstract
The potential antimicrobial compound Chuangxinmycin (CXM) targets the tryptophanyl-tRNA synthetase (TrpRS) of both Gram-negative and Gram-positive bacteria. However, the specific steric recognition mode and interaction mechanism between CXM and TrpRS is unclear. Here, we studied this interaction using recombinant GsTrpRS from Geobacillus stearothermophilus by X-ray crystallography and molecular dynamics (MD) simulations. The crystal structure of the recombinant GsTrpRS in complex with CXM was experimentally determined to a resolution at 2.06 Å. After analysis using a complex-structure probe, MD simulations, and site-directed mutation verification through isothermal titration calorimetry, the interaction between CXM and GsTrpRS was determined to involve the key residues M129, D132, I133, and V141 of GsTrpRS. We further evaluated binding affinities between GsTrpRS WT/mutants and CXM; GsTrpRS was found to bind CXM through hydrogen bonds with D132 and hydrophobic interactions between the lipophilic tricyclic ring of CXM and M129, I133, and V141 in the substrate-binding pockets. This study elucidates the precise interaction mechanism between CXM and its target GsTrpRS at the molecular level and provides a theoretical foundation and guidance for the screening and rational design of more effective CXM analogs against both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Shuai Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangxin Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangteng Wu
- Research and Development Department, ArNuXon Pharm-Sci Co, Ltd, Beijing, China
| | - Yuanyuan Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Abstract
Codon-dependent translation underlies genetics and phylogenetic inferences, but its origins pose two challenges. Prevailing narratives cannot account for the fact that aminoacyl-tRNA synthetases (aaRSs), which translate the genetic code, must collectively enforce the rules used to assemble themselves. Nor can they explain how specific assignments arose from rudimentary differentiation between ancestral aaRSs and corresponding transfer RNAs (tRNAs). Experimental deconstruction of the two aaRS superfamilies created new experimental tools with which to analyze the emergence of the code. Amino acid and tRNA substrate recognition are linked to phase transfer free energies of amino acids and arise largely from aaRS class-specific differences in secondary structure. Sensitivity to protein folding rules endowed ancestral aaRS-tRNA pairs with the feedback necessary to rapidly compare alternative genetic codes and coding sequences. These and other experimental data suggest that the aaRS bidirectional genetic ancestry stabilized the differentiation and interdependence required to initiate and elaborate the genetic coding table.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA;
| | - Peter R Wills
- Department of Physics, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
10
|
Carter CW, Wills PR. Reciprocally-Coupled Gating: Strange Loops in Bioenergetics, Genetics, and Catalysis. Biomolecules 2021; 11:265. [PMID: 33670192 PMCID: PMC7916928 DOI: 10.3390/biom11020265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bioenergetics, genetic coding, and catalysis are all difficult to imagine emerging without pre-existing historical context. That context is often posed as a "Chicken and Egg" problem; its resolution is concisely described by de Grasse Tyson: "The egg was laid by a bird that was not a chicken". The concision and generality of that answer furnish no details-only an appropriate framework from which to examine detailed paradigms that might illuminate paradoxes underlying these three life-defining biomolecular processes. We examine experimental aspects here of five examples that all conform to the same paradigm. In each example, a paradox is resolved by coupling "if, and only if" conditions for reciprocal transitions between levels, such that the consequent of the first test is the antecedent for the second. Each condition thus restricts fluxes through, or "gates" the other. Reciprocally-coupled gating, in which two gated processes constrain one another, is self-referential, hence maps onto the formal structure of "strange loops". That mapping uncovers two different kinds of forces that may help unite the axioms underlying three phenomena that distinguish biology from chemistry. As a physical analog for Gödel's logic, biomolecular strange-loops provide a natural metaphor around which to organize a large body of experimental data, linking biology to information, free energy, and the second law of thermodynamics.
Collapse
Affiliation(s)
- Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| | - Peter R. Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, PB 92019, Auckland 1142, New Zealand;
| |
Collapse
|
11
|
Wills PR, Carter CW. Impedance Matching and the Choice Between Alternative Pathways for the Origin of Genetic Coding. Int J Mol Sci 2020; 21:E7392. [PMID: 33036401 PMCID: PMC7582391 DOI: 10.3390/ijms21197392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
We recently observed that errors in gene replication and translation could be seen qualitatively to behave analogously to the impedances in acoustical and electronic energy transducing systems. We develop here quantitative relationships necessary to confirm that analogy and to place it into the context of the minimization of dissipative losses of both chemical free energy and information. The formal developments include expressions for the information transferred from a template to a new polymer, Iσ; an impedance parameter, Z; and an effective alphabet size, neff; all of which have non-linear dependences on the fidelity parameter, q, and the alphabet size, n. Surfaces of these functions over the {n,q} plane reveal key new insights into the origin of coding. Our conclusion is that the emergence and evolutionary refinement of information transfer in biology follow principles previously identified to govern physical energy flows, strengthening analogies (i) between chemical self-organization and biological natural selection, and (ii) between the course of evolutionary trajectories and the most probable pathways for time-dependent transitions in physics. Matching the informational impedance of translation to the four-letter alphabet of genes uncovers a pivotal role for the redundancy of triplet codons in preserving as much intrinsic genetic information as possible, especially in early stages when the coding alphabet size was small.
Collapse
Affiliation(s)
- Peter R. Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, PB 92019, Auckland 1142, New Zealand
| | - Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
12
|
Carter CW. Escapement mechanisms: Efficient free energy transduction by reciprocally-coupled gating. Proteins 2019; 88:710-717. [PMID: 31743491 DOI: 10.1002/prot.25856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
Conversion of the free energy of NTP hydrolysis efficiently into mechanical work and/or information by transducing enzymes sustains living systems far from equilibrium, and so has been of interest for many decades. Detailed molecular mechanisms, however, remain puzzling and incomplete. We previously reported that catalysis of tryptophan activation by tryptophanyl-tRNA synthetase, TrpRS, requires relative domain motion to re-position the catalytic Mg2+ ion, noting the analogy between that conditional hydrolysis of ATP and the escapement mechanism of a mechanical clock. The escapement allows the time-keeping mechanism to advance discretely, one gear at a time, if and only if the pendulum swings, thereby converting energy from the weight driving the pendulum into rotation of the hands. Coupling of catalysis to domain motion, however, mimics only half of the escapement mechanism, suggesting that domain motion may also be reciprocally coupled to catalysis, completing the escapement metaphor. Computational studies of the free energy surface restraining the domain motion later confirmed that reciprocal coupling: the catalytic domain motion is thermodynamically unfavorable unless the PPi product is released from the active site. These two conditional phenomena-demonstrated together only for the TrpRS mechanism-function as reciprocally-coupled gates. As we and others have noted, such an escapement mechanism is essential to the efficient transduction of NTP hydrolysis free energy into other useful forms of mechanical or chemical work and/or information. Some implementation of both gating mechanisms-catalysis by domain motion and domain motion by catalysis-will thus likely be found in many other systems.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
13
|
Kaiser F, Bittrich S, Salentin S, Leberecht C, Haupt VJ, Krautwurst S, Schroeder M, Labudde D. Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases. PLoS Comput Biol 2018; 14:e1006101. [PMID: 29659563 PMCID: PMC5919687 DOI: 10.1371/journal.pcbi.1006101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/26/2018] [Accepted: 03/20/2018] [Indexed: 12/22/2022] Open
Abstract
The origin of the machinery that realizes protein biosynthesis in all organisms is still unclear. One key component of this machinery are aminoacyl tRNA synthetases (aaRS), which ligate tRNAs to amino acids while consuming ATP. Sequence analyses revealed that these enzymes can be divided into two complementary classes. Both classes differ significantly on a sequence and structural level, feature different reaction mechanisms, and occur in diverse oligomerization states. The one unifying aspect of both classes is their function of binding ATP. We identified Backbone Brackets and Arginine Tweezers as most compact ATP binding motifs characteristic for each Class. Geometric analysis shows a structural rearrangement of the Backbone Brackets upon ATP binding, indicating a general mechanism of all Class I structures. Regarding the origin of aaRS, the Rodin-Ohno hypothesis states that the peculiar nature of the two aaRS classes is the result of their primordial forms, called Protozymes, being encoded on opposite strands of the same gene. Backbone Brackets and Arginine Tweezers were traced back to the proposed Protozymes and their more efficient successors, the Urzymes. Both structural motifs can be observed as pairs of residues in contemporary structures and it seems that the time of their addition, indicated by their placement in the ancient aaRS, coincides with the evolutionary trace of Proto- and Urzymes. Aminoacyl tRNA synthetases (aaRS) are primordial enzymes essential for interpretation and transfer of genetic information. Understanding the origin of the peculiarities observed with aaRS can explain what constituted the earliest life forms and how the genetic code was established. The increasing amount of experimentally determined three-dimensional structures of aaRS opens up new avenues for high-throughput analyses of molecular mechanisms. In this study, we present an exhaustive structural analysis of ATP binding motifs. We unveil an oppositional implementation of enzyme substrate binding in each aaRS Class. While Class I binds via interactions mediated by backbone hydrogen bonds, Class II uses a pair of arginine residues to establish salt bridges to its ATP ligand. We show how nature realized the binding of the same ligand species with completely different mechanisms. In addition, we demonstrate that sequence or even structure analysis for conserved residues may miss important functional aspects which can only be revealed by ligand interaction studies. Additionally, the placement of those key residues in the structure supports a popular hypothesis, which states that prototypic aaRS were once coded on complementary strands of the same gene.
Collapse
Affiliation(s)
- Florian Kaiser
- University of Applied Sciences Mittweida, Mittweida, Germany
- Biotechnology Center (BIOTEC), TU Dresden, Dresden, Germany
- * E-mail:
| | - Sebastian Bittrich
- University of Applied Sciences Mittweida, Mittweida, Germany
- Biotechnology Center (BIOTEC), TU Dresden, Dresden, Germany
| | | | - Christoph Leberecht
- University of Applied Sciences Mittweida, Mittweida, Germany
- Biotechnology Center (BIOTEC), TU Dresden, Dresden, Germany
| | | | | | | | - Dirk Labudde
- University of Applied Sciences Mittweida, Mittweida, Germany
| |
Collapse
|
14
|
Carter CW, Chandrasekaran SN, Weinreb V, Li L, Williams T. Combining multi-mutant and modular thermodynamic cycles to measure energetic coupling networks in enzyme catalysis. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:032101. [PMID: 28191480 PMCID: PMC5272822 DOI: 10.1063/1.4974218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
We measured and cross-validated the energetics of networks in Bacillus stearothermophilus Tryptophanyl-tRNA synthetase (TrpRS) using both multi-mutant and modular thermodynamic cycles. Multi-dimensional combinatorial mutagenesis showed that four side chains from this "molecular switch" move coordinately with the active-site Mg2+ ion as the active site preorganizes to stabilize the transition state for amino acid activation. A modular thermodynamic cycle consisting of full-length TrpRS, its Urzyme, and the Urzyme plus each of the two domains deleted in the Urzyme gives similar energetics. These dynamic linkages, although unlikely to stabilize the transition-state directly, consign the active-site preorganization to domain motion, assuring coupled vectorial behavior.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7260, USA
| | - Srinivas Niranj Chandrasekaran
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7260, USA
| | - Violetta Weinreb
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7260, USA
| | - Li Li
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7260, USA
| | - Tishan Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7260, USA
| |
Collapse
|
15
|
Carter CW. High-Dimensional Mutant and Modular Thermodynamic Cycles, Molecular Switching, and Free Energy Transduction. Annu Rev Biophys 2017; 46:433-453. [PMID: 28375734 DOI: 10.1146/annurev-biophys-070816-033811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding how distinct parts of proteins produce coordinated behavior has driven and continues to drive advances in protein science and enzymology. However, despite consensus about the conceptual basis for allostery, the idiosyncratic nature of allosteric mechanisms resists general approaches. Computational methods can identify conformational transition states from structural changes, revealing common switching mechanisms that impose multistate behavior. Thermodynamic cycles use factorial perturbations to measure coupling energies between side chains in molecular switches that mediate shear during domain motion. Such cycles have now been complemented by modular cycles that measure energetic coupling between separable domains. For one model system, energetic coupling between domains has been shown to be quantitatively equivalent to that between dynamic side chains. Linkages between domain motion, switching residues, and catalysis make nucleoside triphosphate hydrolysis conditional on domain movement, confirming an essential yet neglected aspect of free energy transduction and suggesting the potential generality of these studies.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514;
| |
Collapse
|
16
|
Carter CW. Coding of Class I and II Aminoacyl-tRNA Synthetases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 966:103-148. [PMID: 28828732 PMCID: PMC5927602 DOI: 10.1007/5584_2017_93] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aminoacyl-tRNA synthetases and their cognate transfer RNAs translate the universal genetic code. The twenty canonical amino acids are sufficiently diverse to create a selective advantage for dividing amino acid activation between two distinct, apparently unrelated superfamilies of synthetases, Class I amino acids being generally larger and less polar, Class II amino acids smaller and more polar. Biochemical, bioinformatic, and protein engineering experiments support the hypothesis that the two Classes descended from opposite strands of the same ancestral gene. Parallel experimental deconstructions of Class I and II synthetases reveal parallel losses in catalytic proficiency at two novel modular levels-protozymes and Urzymes-associated with the evolution of catalytic activity. Bi-directional coding supports an important unification of the proteome; affords a genetic relatedness metric-middle base-pairing frequencies in sense/antisense alignments-that probes more deeply into the evolutionary history of translation than do single multiple sequence alignments; and has facilitated the analysis of hitherto unknown coding relationships in tRNA sequences. Reconstruction of native synthetases by modular thermodynamic cycles facilitated by domain engineering emphasizes the subtlety associated with achieving high specificity, shedding new light on allosteric relationships in contemporary synthetases. Synthetase Urzyme structural biology suggests that they are catalytically-active molten globules, broadening the potential manifold of polypeptide catalysts accessible to primitive genetic coding and motivating revisions of the origins of catalysis. Finally, bi-directional genetic coding of some of the oldest genes in the proteome places major limitations on the likelihood that any RNA World preceded the origins of coded proteins.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7260, USA.
| |
Collapse
|