1
|
Li Z, Peng J, Zhu Y, Xu C, Gelin MF, Gu FL, Lan Z. Transient-Absorption Pump-Probe Spectra as Information-Rich Observables: Case Study of Fulvene. Molecules 2025; 30:1439. [PMID: 40286056 PMCID: PMC11990432 DOI: 10.3390/molecules30071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Conical intersections (CIs) are the most efficient channels of photodeactivation and energy transfer, while femtosecond spectroscopy is the main experimental tool delivering information on molecular CI-driven photoinduced processes. In this work, we undertake a comprehensive ab initio investigation of the CI-mediated internal conversion in fulvene by simulating evolutions of electronic populations, bond lengths and angles, and time-resolved transient absorption (TA) pump-probe (PP) spectra. TA PP spectra are evaluated on the fly by combining the symmetrical quasiclassical/Meyer-Miller-Stock-Thoss (SQC/MMST) dynamics and the doorway-window representation of spectroscopic signals. We show that the simulated time-resolved TA PP spectra reveal not only the population dynamics but also the key nuclear motions as well as mode-mode couplings. We also demonstrate that TA PP signals are not only experimental observables: They can also be considered as information-rich purely theoretical observables, which deliver more information on the CI-driven dynamics than conventional electronic populations. This information can be extracted by the appropriate theoretical analyses of time-resolved TA PP signals.
Collapse
Affiliation(s)
- Zhaofa Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China;
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Yifei Zhu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Maxim F. Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| |
Collapse
|
2
|
Sayer T, Montoya-Castillo A. Generalized quantum master equations can improve the accuracy of semiclassical predictions of multitime correlation functions. J Chem Phys 2024; 161:011101. [PMID: 38949578 DOI: 10.1063/5.0219205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Multitime quantum correlation functions are central objects in physical science, offering a direct link between the experimental observables and the dynamics of an underlying model. While experiments such as 2D spectroscopy and quantum control can now measure such quantities, the accurate simulation of such responses remains computationally expensive and sometimes impossible, depending on the system's complexity. A natural tool to employ is the generalized quantum master equation (GQME), which can offer computational savings by extending reference dynamics at a comparatively trivial cost. However, dynamical methods that can tackle chemical systems with atomistic resolution, such as those in the semiclassical hierarchy, often suffer from poor accuracy, limiting the credence one might lend to their results. By combining work on the accuracy-boosting formulation of semiclassical memory kernels with recent work on the multitime GQME, here we show for the first time that one can exploit a multitime semiclassical GQME to dramatically improve both the accuracy of coarse mean-field Ehrenfest dynamics and obtain orders of magnitude efficiency gains.
Collapse
Affiliation(s)
- Thomas Sayer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | | |
Collapse
|
3
|
Reppert M, Reppert D. Equivalence of quantum and classical third order response for weakly anharmonic coupled oscillators. J Chem Phys 2023; 158:114114. [PMID: 36948800 DOI: 10.1063/5.0135260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Two-dimensional (2D) infrared (IR) spectra are commonly interpreted using a quantum diagrammatic expansion that describes the changes to the density matrix of quantum systems in response to light-matter interactions. Although classical response functions (based on Newtonian dynamics) have shown promise in computational 2D IR modeling studies, a simple diagrammatic description has so far been lacking. Recently, we introduced a diagrammatic representation for the 2D IR response functions of a single, weakly anharmonic oscillator and showed that the classical and quantum 2D IR response functions for this system are identical. Here, we extend this result to systems with an arbitrary number of bilinearly coupled, weakly anharmonic oscillators. As in the single-oscillator case, quantum and classical response functions are found to be identical in the weakly anharmonic limit or, in experimental terms, when the anharmonicity is small relative to the optical linewidth. The final form of the weakly anharmonic response function is surprisingly simple and offers potential computational advantages for application to large, multi-oscillator systems.
Collapse
Affiliation(s)
- Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Deborah Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
4
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
5
|
Cao J. Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities. J Phys Chem Lett 2022; 13:10943-10951. [PMID: 36408925 DOI: 10.1021/acs.jpclett.2c02707] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A general rate theory for resonance energy transfer (gRET) is formulated to incorporate any degrees of freedom (e.g., rotation, vibration, exciton, and polariton) as well as coherently coupled composite donor or acceptor states. The compact rate expression allows us to establish useful relationships: (i) detailed balance condition when the donor and acceptor are at the same temperature; (ii) proportionality to the product of dipole correlation tensors, which is not necessarily equivalent to spectral overlap; (iii) scaling with the effective coherent size, i.e., the number of coherently coupled molecules or modes; (iv) decomposition of collective rate in homogeneous systems into the monomer and coherence contributions such that the ratio of the two defines the quantum enhancement factor F; (v) spatial and orientational dependences as derived from the interaction potential. For the special case of exciton transfer, the general rate formalism reduces to FRET or its multichromophoric extension. When applied to cavity-assisted vibrational energy transfer between molecules or within a molecule, the general rate expression provides an intuitive explanation of intriguing phenomena such as cooperativity, resonance, and nonlinearity in the collective vibrational strong coupling (VSC) regime, as demonstrated in recent simulations. The relevance of gRET to cavity-catalyzed reactions and intramolecular vibrational redistribution is discussed and will lead to further theoretical developments.
Collapse
Affiliation(s)
- Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
6
|
Polley K, Loring RF. 2D electronic-vibrational spectroscopy with classical trajectories. J Chem Phys 2022; 156:204110. [DOI: 10.1063/5.0090868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional electronic-vibrational (2DEV) spectra have the capacity to probe electron–nuclear interactions in molecules by measuring correlations between initial electronic excitations and vibrational transitions at a later time. The trajectory-based semiclassical optimized mean trajectory approach is applied to compute 2DEV spectra for a system with excitonically coupled electronic excited states vibronically coupled to a chromophore vibration. The chromophore mode is in turn coupled to a bath, inducing redistribution of vibrational populations. The lineshapes and delay-time dynamics of the resulting spectra compare well with benchmark calculations, both at the level of the observable and with respect to contributions from distinct spectroscopic processes.
Collapse
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Roger F. Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
7
|
Begušić T, Tao X, Blake GA, Miller TF. Equilibrium-nonequilibrium ring-polymer molecular dynamics for nonlinear spectroscopy. J Chem Phys 2022; 156:131102. [PMID: 35395895 DOI: 10.1063/5.0087156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Two-dimensional Raman and hybrid terahertz-Raman spectroscopic techniques provide invaluable insight into molecular structures and dynamics of condensed-phase systems. However, corroborating experimental results with theory is difficult due to the high computational cost of incorporating quantum-mechanical effects in the simulations. Here, we present the equilibrium-nonequilibrium ring-polymer molecular dynamics (RPMD), a practical computational method that can account for nuclear quantum effects on the two-time response function of nonlinear optical spectroscopy. Unlike a recently developed approach based on the double Kubo transformed (DKT) correlation function, our method is exact in the classical limit, where it reduces to the established equilibrium-nonequilibrium classical molecular dynamics method. Using benchmark model calculations, we demonstrate the advantages of the equilibrium-nonequilibrium RPMD over classical and DKT-based approaches. Importantly, its derivation, which is based on the nonequilibrium RPMD, obviates the need for identifying an appropriate Kubo transformed correlation function and paves the way for applying real-time path-integral techniques to multidimensional spectroscopy.
Collapse
Affiliation(s)
- Tomislav Begušić
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Xuecheng Tao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Geoffrey A Blake
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
8
|
Polley K, Loring RF. Two-dimensional vibronic spectroscopy with semiclassical thermofield dynamics. J Chem Phys 2022; 156:124108. [DOI: 10.1063/5.0083868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Thermofield dynamics is an exactly correct formulation of quantum mechanics at finite temperature in which a wavefunction is governed by an effective temperature-dependent quantum Hamiltonian. The optimized mean trajectory (OMT) approximation allows the calculation of spectroscopic response functions from trajectories produced by the classical limit of a mapping Hamiltonian that includes physical nuclear degrees of freedom and other effective degrees of freedom representing discrete vibronic states. Here, we develop a thermofield OMT (TF-OMT) approach in which the OMT procedure is applied to a temperature-dependent classical Hamiltonian determined from the thermofield-transformed quantum mapping Hamiltonian. Initial conditions for bath nuclear degrees of freedom are sampled from a zero-temperature distribution. Calculations of two-dimensional electronic spectra and two-dimensional vibrational–electronic spectra are performed for models that include excitonically coupled electronic states. The TF-OMT calculations agree very closely with the corresponding OMT results, which, in turn, represent well benchmark calculations with the hierarchical equations of motion method.
Collapse
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Roger F. Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
9
|
Abstract
Multidimensional optical spectra are measured from the response of a material system to a sequence of laser pulses and have the capacity to elucidate specific molecular interactions and dynamics whose influences are absent or obscured in a conventional linear absorption spectrum. Interpretation of complex spectra is supported by theoretical modeling of the spectroscopic observable, requiring implementation of quantum dynamics for coupled electrons and nuclei. Performing numerically correct quantum dynamics in this context may pose computational challenges, particularly in the condensed phase. Semiclassical methods based on calculating classical trajectories offer a practical alternative. Here I review the recent application of some semiclassical, trajectory-based methods to nonlinear molecular vibrational and electronic spectra. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Roger F. Loring
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Abstract
Numerous linear and non-linear spectroscopic techniques have been developed to elucidate structural and functional information of complex systems ranging from natural systems, such as proteins and light-harvesting systems, to synthetic systems, such as solar cell materials and light-emitting diodes. The obtained experimental data can be challenging to interpret due to the complexity and potential overlapping spectral signatures. Therefore, computational spectroscopy plays a crucial role in the interpretation and understanding of spectral observables of complex systems. Computational modeling of various spectroscopic techniques has seen significant developments in the past decade, when it comes to the systems that can be addressed, the size and complexity of the sample types, the accuracy of the methods, and the spectroscopic techniques that can be addressed. In this Perspective, I will review the computational spectroscopy methods that have been developed and applied for infrared and visible spectroscopies in the condensed phase. I will discuss some of the questions that this has allowed answering. Finally, I will discuss current and future challenges and how these may be addressed.
Collapse
Affiliation(s)
- Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
Polley K, Loring RF. Two-dimensional vibrational-electronic spectra with semiclassical mechanics. J Chem Phys 2021; 154:194110. [PMID: 34240897 DOI: 10.1063/5.0051667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional vibrational-electronic (2DVE) spectra probe the effects on vibronic spectra of initial vibrational excitation in an electronic ground state. The optimized mean trajectory (OMT) approximation is a semiclassical method for computing nonlinear spectra from response functions. Ensembles of classical trajectories are subject to semiclassical quantization conditions, with the radiation-matter interaction inducing discontinuous transitions. This approach has been previously applied to two-dimensional infrared and electronic spectra and is extended here to 2DVE spectra. For a system including excitonic coupling, vibronic coupling, and interaction of a chromophore vibration with a resonant environment, the OMT method is shown to well approximate exact quantum dynamics.
Collapse
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Roger F Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
12
|
Polley K, Loring RF. Spectroscopic response theory with classical mapping Hamiltonians. J Chem Phys 2020; 153:204103. [PMID: 33261495 DOI: 10.1063/5.0029231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exact quantum dynamics with a time-independent Hamiltonian in a discrete state space can be computed using classical mechanics through the classical Meyer-Miller-Stock-Thoss mapping Hamiltonian. In order to compute quantum response functions from classical dynamics, we extend this mapping to a quantum Hamiltonian with time-dependence arising from a classical field. This generalization requires attention to time-ordering in quantum and classical propagators. Quantum response theory with the original quantum Hamiltonian is equivalent to classical response theory with the classical mapping Hamiltonian. We elucidate the structure of classical response theory with the mapping Hamiltonian, thereby generating classical versions of the two-sided quantum density operator diagrams conventionally used to describe spectroscopic processes. This formal development can provide a foundation for new semiclassical approximations to spectroscopic observables for models in which classical nuclear degrees of freedom are introduced into a mapping Hamiltonian describing electronic states. Calculations of the temperature-dependence of two-dimensional electronic spectra for an exciton dimer using two semiclassical approaches are compared with benchmark calculations using the hierarchical equations of motion method.
Collapse
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Roger F Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
13
|
Polley K, Loring RF. One and Two Dimensional Vibronic Spectra for an Exciton Dimer from Classical Trajectories. J Phys Chem B 2020; 124:9913-9920. [DOI: 10.1021/acs.jpcb.0c07078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Roger F. Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Gao X, Lai Y, Geva E. Simulating Absorption Spectra of Multiexcitonic Systems via Quasiclassical Mapping Hamiltonian Methods. J Chem Theory Comput 2020; 16:6465-6480. [DOI: 10.1021/acs.jctc.0c00709] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xing Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yifan Lai
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Gao X, Geva E. A Nonperturbative Methodology for Simulating Multidimensional Spectra of Multiexcitonic Molecular Systems via Quasiclassical Mapping Hamiltonian Methods. J Chem Theory Comput 2020; 16:6491-6502. [DOI: 10.1021/acs.jctc.0c00843] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xing Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Smith LD, Dijkstra AG. Quantum dissipative systems beyond the standard harmonic model: Features of linear absorption and dynamics. J Chem Phys 2019; 151:164109. [PMID: 31675870 DOI: 10.1063/1.5122896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Current simulations of ultraviolet-visible absorption lineshapes and dynamics of condensed phase systems largely adopt a harmonic description to model vibrations. Often, this involves a model of displaced harmonic oscillators that have the same curvature. Although convenient, for many realistic molecular systems, this approximation no longer suffices. We elucidate nonstandard harmonic and anharmonic effects on linear absorption and dynamics using a stochastic Schrödinger equation approach to account for the environment. First, a harmonic oscillator model with ground and excited potentials that differ in curvature is utilized. Using this model, it is shown that curvature difference gives rise to an additional substructure in the vibronic progression of absorption spectra. This effect is explained and subsequently quantified via a derived expression for the Franck-Condon coefficients. Subsequently, anharmonic features in dissipative systems are studied, using a Morse potential and parameters that correspond to the diatomic molecule H2 for differing displacements and environment interaction. Finally, using a model potential, the population dynamics and absorption spectra for the stiff-stilbene photoswitch are presented and features are explained by a combination of curvature difference and anharmonicity in the form of potential energy barriers on the excited potential.
Collapse
Affiliation(s)
- Luke D Smith
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Arend G Dijkstra
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
17
|
Church MS, Ananth N. Semiclassical dynamics in the mixed quantum-classical limit. J Chem Phys 2019; 151:134109. [PMID: 31594341 DOI: 10.1063/1.5117160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The semiclassical double Herman-Kluk initial value representation is an accurate approach to computing quantum real time correlation functions, but its applications are limited by the need to evaluate an oscillatory integral. In previous work, we have shown that this "sign problem" can be mitigated using the modified Filinov filtration technique to control the extent to which individual modes of the system contribute to the overall phase of the integrand. Here, we follow this idea to a logical conclusion: we analytically derive a general expression for the mixed quantum-classical limit of the semiclassical correlation function-analytical mixed quantum-classical-initial value representation (AMQC-IVR), where the phase contributions from the "classical" modes of the system are filtered while the "quantum" modes are treated in the full semiclassical limit. We numerically demonstrate the accuracy and efficiency of the AMQC-IVR formulation in calculations of quantum correlation functions and reaction rates using three model systems with varied coupling strengths between the classical and quantum subsystems. We also introduce a separable prefactor approximation that further reduces computational cost but is only accurate in the limit of weak coupling between the quantum and classical subsystems.
Collapse
Affiliation(s)
- Matthew S Church
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Nandini Ananth
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
18
|
Polley K, Loring RF. Two-dimensional vibronic spectra from classical trajectories. J Chem Phys 2019; 150:164114. [DOI: 10.1063/1.5093911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Roger F. Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
19
|
Jain A, Petit AS, Anna JM, Subotnik JE. Simple and Efficient Theoretical Approach To Compute 2D Optical Spectra. J Phys Chem B 2019; 123:1602-1617. [DOI: 10.1021/acs.jpcb.8b08674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amber Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Andrew S. Petit
- Department of Chemistry and Biochemistry, California State University, Fullerton, California 92834, United States
| | - Jessica M. Anna
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
20
|
Provazza J, Coker DF. Communication: Symmetrical quasi-classical analysis of linear optical spectroscopy. J Chem Phys 2018; 148:181102. [DOI: 10.1063/1.5031788] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Justin Provazza
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - David F. Coker
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
21
|
Reppert M, Brumer P. Classical coherent two-dimensional vibrational spectroscopy. J Chem Phys 2018; 148:064101. [DOI: 10.1063/1.5017985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mike Reppert
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
22
|
Ramesh P, Loring RF. Thermal Population Fluctuations in Two-Dimensional Infrared Spectroscopy Captured with Semiclassical Mechanics. J Phys Chem B 2018; 122:3647-3654. [DOI: 10.1021/acs.jpcb.7b12122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prashanth Ramesh
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Roger F. Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
23
|
Jansen TLC. Simple Quantum Dynamics with Thermalization. J Phys Chem A 2018; 122:172-183. [PMID: 29199829 PMCID: PMC5770886 DOI: 10.1021/acs.jpca.7b10380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/04/2017] [Indexed: 02/05/2023]
Abstract
In this paper, we introduce two simple quantum dynamics methods. One is based on the popular surface-hopping method, and the other is based on rescaling of the propagation on the bath ground-state potential surface. The first method is special, as it avoids specific feedback from the simulated quantum system to the bath and can be applied for precalculated classical trajectories. It is based on the equipartition theorem to determine if hops between different potential energy surfaces are allowed. By comparing with the formally exact Hierarchical Equations Of Motion approach for four model systems we find that the method generally approximates the quantum dynamics toward thermal equilibrium very well. The second method is based on rescaling of the nonadiabatic coupling and also neglect the effect of the state of the quantum system on the bath. By the nature of the approximations, they cannot reproduce the effect of bath relaxation following excitation. However, the methods are both computationally more tractable than the conventional fewest switches surface hopping, and we foresee that the methods will be powerful for simulations of quantum dynamics in systems with complex bath dynamics, where the system-bath coupling is not too strong compared to the thermal energy.
Collapse
Affiliation(s)
- Thomas L. C. Jansen
- Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
24
|
Kovac PA, Cina JA. Mixed quantum/semiclassical wave-packet dynamical method for condensed-phase molecular spectroscopy signals. J Chem Phys 2017; 147:224112. [DOI: 10.1063/1.5003386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Philip A. Kovac
- Department of Chemistry and Biochemistry, and Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Jeffrey A. Cina
- Department of Chemistry and Biochemistry, and Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|