1
|
Hansen JS. Modified and generalized single-element Maxwell viscoelastic model. Phys Rev E 2024; 110:L023101. [PMID: 39295000 DOI: 10.1103/physreve.110.l023101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/03/2024] [Indexed: 09/21/2024]
Abstract
In this Letter, the single-element Maxwell model is generalized with respect to the wave vector and extended with a correction function that measures the reduced viscous response. This model has only two free parameters and avoids the attenuation-frequency locking present in the original model. Through molecular simulations it is shown that the model satisfactory predicts the transverse dynamics of the binary Lennard-Jones system at different temperatures, as well as water and toluene at ambient conditions. The correction function shows that the viscous response is significantly reduced compared to the predictions of the original Maxwell model and that there exists a characteristic length scale of minimum dissipation.
Collapse
|
2
|
Eliasen KL, Gabriel J, Blochowicz T, Gainaru CP, Christensen TE, Niss K. What is the origin of slow relaxation modes in highly viscous ionic liquids? J Chem Phys 2024; 161:034506. [PMID: 39012811 DOI: 10.1063/5.0215661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Room temperature ionic liquids (RTILs) are molten salts consisting entirely of ions and have over the past decades gained increased interest due to their high potential in applications. These structurally complex systems often display multiple relaxation modes in the response functions at lower frequencies, hinting to complex underlying mechanisms. While the existence of these multimodal spectra in the shear mechanical, dielectric, and light scattering response of RTILs has been confirmed multiple times, controversy still surrounds the origin. This paper, therefore, aims to provide additional insights into the multimodal spectra seen in RTILs by presenting new shear mechanical results on seven different RTILs: Pyr1n-TFSI with n = 4, 6, and 8; Pyr18-TFSI mixed with Li-TFSI in two high concentrations; and Cn-mim-BF4 with n = 3 and 8. Dynamic depolarized light scattering was also measured on one of the Pyr18-TFSI Li-salt mixtures. These specific cases were analyzed in detail and put into a bigger perspective together with an overview of the literature. Recent literature offers two specific explanations for the origin of the multimodal shear mechanical spectra: (1) cation-anion time scale separation or (2) combined cation-anion relaxation in addition to a dynamic signal from mesoscale aggregates at lower frequencies. However, neither of these two pictures can consistently explain all the results on different ionic liquids. Instead, we conclude that the origin of the multimodal spectrum is system specific. This underlines the complexity of this class of liquids and shows that great care must be taken when making general conclusions based on specific cases.
Collapse
Affiliation(s)
- Kira L Eliasen
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Jan Gabriel
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Thomas Blochowicz
- Institut für Festkörperphysik, Technische Universität Darmstadt, Darmstadt 64289, Germany
| | - Catalin P Gainaru
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Tage E Christensen
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Kristine Niss
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| |
Collapse
|
3
|
Buchenau U. Terminal stage of highly viscous flow. Phys Rev E 2022; 106:024601. [PMID: 36109950 DOI: 10.1103/physreve.106.024601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The shear misfit model for highly viscous flow is based upon a theoretical prediction for its terminal stage in terms of irreversible Eshelby relaxations in five-dimensional shear space. The model is shown to predict a small δ-function (Debye peak) in the dielectric spectrum, in agreement with experimental evidence. It is extended to density fluctuations, and a relation between adiabatic and isothermal compressibility jumps at the glass transition is derived. The model is applied to high-precision measurements of the shear, dielectric, and bulk relaxation data in two vacuum pump oils and in squalane, a short chain polymer with a strong secondary relaxation peak. The terminal stage of aging data in squalane demonstrates that the adiabatic density fluctuations contribute a fast component to the thermal expansion, explaining why the thermal expansion seems to equilibrate a bit faster than the dynamic heat capacity.
Collapse
Affiliation(s)
- U Buchenau
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), 52425 Jülich, Germany
| |
Collapse
|
4
|
Hecksher T, Olsen NB, Dyre JC. Rheological model for the alpha relaxation of glass-forming liquids and its comparison to data for DC704 and DC705. J Chem Phys 2022; 156:194502. [PMID: 35597661 DOI: 10.1063/5.0090249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dynamic shear-modulus data are presented for two silicone oils DC704 and DC705 for frequencies between 1 mHz and 10 kHz at temperatures covering more than five decades of relaxation-time variation. Data are fitted to the alpha part of a phenomenological model previously shown to describe well the dynamic shear modulus of squalane, which has a large beta process [Hecksher et al., J. Chem. Phys. 146, 154504 (2017)]. That model is characterized by additivity of the alpha and beta shear compliance and by a high-frequency decay of the alpha process in proportion to ω-1/2, where ω is the angular frequency. The fits of the alpha part of this model to the DC704 and DC705 data are compared to fits by a Havriliak-Negami type model, a Barlow-Erginsav-Lamb model, and a Cole-Davidson type model. At all temperatures, the best fit is obtained by the alpha part of the squalane model. This strengthens the conjecture that so-called t-relaxation, leading to high-frequency loss decays proportional to ω-1/2, is generic to the alpha relaxation of supercooled liquids [J. C. Dyre, Phys. Rev. E 74, 021502 (2006); Nielsen et al., J. Chem. Phys. 130, 154508 (2009); and Pabst et al., J. Phys. Chem. Lett. 12, 3685-3690 (2021)].
Collapse
Affiliation(s)
- Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Niels Boye Olsen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
5
|
Weigl P, Hecksher T, Dyre JC, Walther T, Blochowicz T. Identity of the local and macroscopic dynamic elastic responses in supercooled 1-propanol. Phys Chem Chem Phys 2021; 23:16537-16541. [PMID: 34312639 DOI: 10.1039/d1cp02671b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glass-forming liquids are well known to have significant dynamic heterogeneities, leading to spatially grossly varying elastic properties throughout the system. In this paper, we compare the local elastic response of supercooled 1-propanol monitored by triplet state solvation dynamics to the macroscopic dynamic shear modulus measured by a piezo-electric gauge. The time-dependent responses are found to be identical, which means that the dynamic macroscopic shear modulus provides a good measure of the average local elastic properties. Since the macroscopic shear modulus of a dynamically inhomogeneous system in general is not just the average of the local moduli, there was no reason to expect such a result. This surprising finding not only provides constraints for models of dynamical heterogeneities in glass-forming liquids, but also allows for a fairly straightforward check on elastic models for glassy dynamics.
Collapse
Affiliation(s)
- Peter Weigl
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany.
| | | | | | | | | |
Collapse
|
6
|
Roed LA, Dyre JC, Niss K, Hecksher T, Riechers B. Time-scale ordering in hydrogen- and van der Waals-bonded liquids. J Chem Phys 2021; 154:184508. [PMID: 34241011 DOI: 10.1063/5.0049108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The time scales of structural relaxation are investigated on the basis of five different response functions for 1,2, 6-hexanetriol, a hydrogen-bonded liquid with a minor secondary contribution, and 2,6,10,15,19,23-hexamethyl-tetracosane (squalane), a van der Waals-bonded liquid with a prominent secondary relaxation process. Time scales of structural relaxation are derived as inverse peak frequencies for each investigated response function. For 1,2,6-hexanetriol, the ratios of the time scales are temperature-independent, while a decoupling of time scales is observed for squalane in accordance with the literature. An alternative evaluation approach is made on the squalane data, extracting time scales from the terminal relaxation mode instead of the peak position, and in this case, temperature-independent time-scale ratios are also found for squalane, despite its strong secondary relaxation contribution. Interestingly, the very same ordering of response-function-specific time scales is observed for these two liquids, which is also consistent with the observation made for simple van der Waals-bonded liquids reported previously [Jakobsen et al., J. Chem. Phys. 136, 081102 (2012)]. This time-scale ordering is based on the following response functions, from fast to slow dynamics: shear modulus, bulk modulus, dielectric permittivity, longitudinal thermal expansivity coefficient, and longitudinal specific heat. These findings indicate a general relation between the time scales of different response functions and, as inter-molecular interactions apparently play a subordinate role, suggest a rather generic nature of the process of structural relaxation.
Collapse
Affiliation(s)
- Lisa Anita Roed
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Birte Riechers
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
7
|
Niss K, Dyre JC, Hecksher T. Long-time structural relaxation of glass-forming liquids: Simple or stretched exponential? J Chem Phys 2020; 152:041103. [DOI: 10.1063/1.5142189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C. Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
8
|
Wang E, Zhu J, Zhao D, Xie S, Bates FS, Lodge TP. Effect of Solvent Selectivity on Chain Exchange Kinetics in Block Copolymer Micelles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Niss K, Hecksher T. Perspective: Searching for simplicity rather than universality in glass-forming liquids. J Chem Phys 2018; 149:230901. [PMID: 30579292 DOI: 10.1063/1.5048093] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This article gives an overview of experimental results on dynamics in bulk glass-forming molecular liquids. Rather than looking for phenomenology that is universal, in the sense that it is seen in all liquids, the focus is on identifying the basic characteristics, or "stylized facts," of the glass transition problem, i.e., the central observations that a theory of the physics of glass formation should aim to explain in a unified manner.
Collapse
Affiliation(s)
- Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
10
|
Buchenau U. Eshelby description of highly viscous flow—Half model, half theory. J Chem Phys 2018; 149:044508. [DOI: 10.1063/1.5042361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- U. Buchenau
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), 52425 Jülich, Germany
| |
Collapse
|
11
|
Jensen MH, Gainaru C, Alba-Simionesco C, Hecksher T, Niss K. Slow rheological mode in glycerol and glycerol–water mixtures. Phys Chem Chem Phys 2018; 20:1716-1723. [DOI: 10.1039/c7cp06482a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycerol–water mixtures were studied at molar concentrations ranging from xgly = 1 (neat glycerol) to xgly = 0.3 using shear mechanical spectroscopy.
Collapse
Affiliation(s)
- M. H. Jensen
- Glass & Time, IMFUFA, Department of Science and Environment, Roskilde University
- DK-4000 Roskilde
- Denmark
- Laboratoire Léon Brillouin, CNRS CEA-UMR 12, CEA Saclay
- 91191 Gif-sur-Yvette Cedex
| | - C. Gainaru
- Fakultät Physik, Technische Universität Dortmund
- 44221 Dortmund
- Germany
| | - C. Alba-Simionesco
- Laboratoire Léon Brillouin, CNRS CEA-UMR 12, CEA Saclay
- 91191 Gif-sur-Yvette Cedex
- France
| | - T. Hecksher
- Glass & Time, IMFUFA, Department of Science and Environment, Roskilde University
- DK-4000 Roskilde
- Denmark
| | - K. Niss
- Glass & Time, IMFUFA, Department of Science and Environment, Roskilde University
- DK-4000 Roskilde
- Denmark
| |
Collapse
|