1
|
Ibele LM, Sangiogo Gil E, Villaseco Arribas E, Agostini F. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Phys Chem Chem Phys 2024; 26:26693-26718. [PMID: 39417703 DOI: 10.1039/d4cp02489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This perspective offers an overview of the applications of the exact factorization of the electron-nuclear wavefunction to the domain of theoretical photochemistry, where the aim is to gain insights into the ultrafast dynamics of molecular systems via simulations of their excited-state dynamics beyond the Born-Oppenheimer approximation. The exact factorization offers an alternative viewpoint to the Born-Huang representation for the interpretation of dynamical processes involving the electronic ground and excited states as well as their coupling through the nuclear motion. Therefore, the formalism has been used to derive algorithms for quantum molecular-dynamics simulations where the nuclear motion is treated using trajectories and the electrons are treated quantum mechanically. These algorithms have the characteristic features of being based on coupled and on auxiliary trajectories, and have shown excellent performance in describing a variety of excited-state processes, as this perspective illustrates. We conclude with a discussion on the authors' point of view on the future of the exact factorization.
Collapse
Affiliation(s)
- Lea Maria Ibele
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| | - Eduarda Sangiogo Gil
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Evaristo Villaseco Arribas
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| |
Collapse
|
2
|
Picconi D. Dynamics of high-dimensional quantum systems coupled to a harmonic bath. General theory and implementation via multiconfigurational wave packets and truncated hierarchical equations for the mean-fields. J Chem Phys 2024; 161:164108. [PMID: 39450734 DOI: 10.1063/5.0233708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Modeling the dynamics of a quantum system coupled to a dissipative environment becomes particularly challenging when the system's dimensionality is too high to permit the computation of its eigenstates. This problem is addressed by introducing an eigenstate-free formalism, where the open quantum system is represented as a mixture of high-dimensional, time-dependent wave packets governed by coupled Schrödinger equations, while the environment is described by a multi-component quantum master equation. An efficient computational implementation of this formalism is presented, employing a variational mixed Gaussian/multiconfigurational time-dependent Hartree (G-MCTDH) ansatz for the wave packets and propagating the environment dynamics via hierarchical equations, truncated at the first or second level of the hierarchy. The effectiveness of the proposed methodology is demonstrated on a 61-dimensional model of phonon-driven vibrational relaxation of an adsorbate. G-MCTDH calculations on 4- and 10-dimensional reduced models, combined with truncated hierarchical equations for the mean fields, nearly quantitatively replicate the full-dimensional quantum dynamical results on vibrational relaxation while significantly reducing the computational time. This approach thus offers a promising quantum dynamical method for modeling complex system-bath interactions, where a large number of degrees of freedom must be explicitly considered.
Collapse
Affiliation(s)
- David Picconi
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Gu B. A Discrete-Variable Local Diabatic Representation of Conical Intersection Dynamics. J Chem Theory Comput 2023; 19:6557-6563. [PMID: 37737832 DOI: 10.1021/acs.jctc.3c00560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Conical intersections (CIs) are ubiquitous in polyatomic molecules and are responsible for a wide range of phenomena in photochemistry and photophysics. Modeling the conical intersection dynamics with adiabatic electronic states is hindered by the divergence of the first- and second-order derivative couplings at CIs due to electronic degeneracy. We introduce and implement a novel diabatic representation for exact correlated electron-nuclear wave packet dynamics through conical intersections. It directly employs the adiabatic electronic states but avoids the singular first- and second-order derivative couplings and is robust to different gauge choices of the electronic wave function phases. The reference nuclear geometries defining the adiabatic electronic states are determined by a discrete-variable representation of the nuclear coordinates. The nonadiabatic effects are accounted for by the electronic overlap matrix instead of derivative couplings as in the adiabatic representation. Illustrated by a two-mode conical intersection model, this representation captures all nonadiabatic effects, including electronic transitions, electronic coherence, and geometric phases. Thus, this representation provides a singularity-free framework for modeling ab initio conical intersection wave packet dynamics.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry & Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
4
|
Villaseco Arribas E, Agostini F, Maitra NT. Exact Factorization Adventures: A Promising Approach for Non-Bound States. Molecules 2022; 27:molecules27134002. [PMID: 35807246 PMCID: PMC9267945 DOI: 10.3390/molecules27134002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Modeling the dynamics of non-bound states in molecules requires an accurate description of how electronic motion affects nuclear motion and vice-versa. The exact factorization (XF) approach offers a unique perspective, in that it provides potentials that act on the nuclear subsystem or electronic subsystem, which contain the effects of the coupling to the other subsystem in an exact way. We briefly review the various applications of the XF idea in different realms, and how features of these potentials aid in the interpretation of two different laser-driven dissociation mechanisms. We present a detailed study of the different ways the coupling terms in recently-developed XF-based mixed quantum-classical approximations are evaluated, where either truly coupled trajectories, or auxiliary trajectories that mimic the coupling are used, and discuss their effect in both a surface-hopping framework as well as the rigorously-derived coupled-trajectory mixed quantum-classical approach.
Collapse
Affiliation(s)
| | - Federica Agostini
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France;
| | - Neepa T. Maitra
- Department of Physics, Rutgers University, Newark, NJ 07102, USA;
- Correspondence:
| |
Collapse
|
5
|
Talotta F, Lauvergnat D, Agostini F. Describing the photo-isomerization of a retinal chromophore model with coupled and quantum trajectories. J Chem Phys 2022; 156:184104. [DOI: 10.1063/5.0089415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The exact factorization of the electron-nuclear wavefunction is applied to the study of the photo- isomerization of a retinal chromophore model. We describe such an ultrafast nonadiabatic process by analyzing the time-dependent potentials of the theory and by mimicking nuclear dynamics with quantum and coupled trajectories. The time-dependent vector and scalar potentials are the signature of the exact factorization, as they guide nuclear dynamics by encoding the complete electronic dynamics and including excited-state effects. Analysis of the potentials is, thus, essential - when possible - to predict the time-dependent behavior of the system of interest. In this work, we employ the exact time-dependent potentials, available for the numerically-exactly solvable model used here, to propagate quantum nuclear trajectories representing the isomerization reaction of the retinal chromophore. The quantum trajectories are the best possible trajectory-based description of the reaction when using the exact-factorization formalism, and thus allow us to assess the performance of the coupled-trajectory, fully approximate, schemes derived from the exact-factorization equations.
Collapse
Affiliation(s)
| | - David Lauvergnat
- Institut de Chimie Physique, UMR 8000, CNRS Délégation Ile-de-France Sud, France
| | | |
Collapse
|
6
|
Rassolov V, Garashchuk S. Local Measure of Quantum Effects in Quantum Dynamics. J Phys Chem A 2021; 125:4653-4667. [PMID: 34014096 DOI: 10.1021/acs.jpca.1c02533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Madelung-de Broglie-Bohm formulation of the Schrödinger equation casts the time-evolution of a wave function as dynamics of an ensemble of quantum, or Bohmian, trajectories, interacting via the nonlocal quantum potential. This trajectory perspective gives insight into the quantumness (or classicality) of a given system due to clear partitioning of the energy into classical and quantum components. Here, we propose a system-independent measure of the quantumness of dynamics, based on the energy time-change, referred to as "quantum power". This measure is local in the coordinate space. Based on applications to model chemical systems, we argue that during the transition from the quantum to classical regime, defined as compression of quantization, the quantum features in dynamics do not "disappear" but are pushed forward in time. This feature may be used to gauge the validity of the semiclassical and other approximate dynamics approaches in applications to anharmonic systems.
Collapse
Affiliation(s)
- Vitaly Rassolov
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
7
|
Pieroni C, Marsili E, Lauvergnat D, Agostini F. Relaxation dynamics through a conical intersection: Quantum and quantum-classical studies. J Chem Phys 2021; 154:034104. [PMID: 33499611 DOI: 10.1063/5.0036726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We study the relaxation process through a conical intersection of a photo-excited retinal chromophore model. The analysis is based on a two-electronic-state two-dimensional Hamiltonian developed by Hahn and Stock [J. Phys. Chem. B 104 1146 (2000)] to reproduce, with a minimal model, the main features of the 11-cis to all-trans isomerization of the retinal of rhodopsin. In particular, we focus on the performance of various trajectory-based schemes to nonadiabatic dynamics, and we compare quantum-classical results to the numerically exact quantum vibronic wavepacket dynamics. The purpose of this work is to investigate, by analyzing electronic and nuclear observables, how the sampling of initial conditions for the trajectories affects the subsequent dynamics.
Collapse
Affiliation(s)
- Carlotta Pieroni
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Emanuele Marsili
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| |
Collapse
|
8
|
Talotta F, Agostini F, Ciccotti G. Quantum Trajectories for the Dynamics in the Exact Factorization Framework: A Proof-of-Principle Test. J Phys Chem A 2020; 124:6764-6777. [PMID: 32786992 DOI: 10.1021/acs.jpca.0c03969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the framework of the exact factorization of the time-dependent electron-nuclear wave function, we investigate the possibility of solving the nuclear time-dependent Schrödinger equation based on trajectories. The nuclear equation is separated in a Hamilton-Jacobi equation for the phase of the wave function, and a continuity equation for its (squared) modulus. For illustrative adiabatic and nonadiabatic one-dimensional models, we implement a procedure to follow the evolution of the nuclear density along the characteristics of the Hamilton-Jacobi equation. Those characteristics are referred to as quantum trajectories, since they are generated via ordinary differential equations similar to Hamilton's equations, but including the so-called quantum potential, and they can be used to reconstruct exactly the quantum-mechanical nuclear wave function, provided infinite initial conditions are propagated in time.
Collapse
Affiliation(s)
- Francesco Talotta
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France.,Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France.,Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Giovanni Ciccotti
- CNR, Institute for Applied Computing "Mauro Picone" (IAC), Via dei Taurini 19, 00185 Rome, Italy.,School of Physics, University College of Dublin UCD - Belfield, Dublin 4, Ireland.,Dipartimento di Fisica, Università di Roma La Sapienza, P. le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
9
|
Gu B, Franco I. When can quantum decoherence be mimicked by classical noise? J Chem Phys 2019; 151:014109. [DOI: 10.1063/1.5099499] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bing Gu
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Department of Physics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
10
|
Agostini F, Curchod BFE. Different flavors of nonadiabatic molecular dynamics. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1417] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Federica Agostini
- Laboratoire de Chimie Physique UMR 8000 CNRS/University Paris‐Sud Orsay France
| | | |
Collapse
|
11
|
Li TE, Chen HT, Subotnik JE. Comparison of Different Classical, Semiclassical, and Quantum Treatments of Light–Matter Interactions: Understanding Energy Conservation. J Chem Theory Comput 2019; 15:1957-1973. [DOI: 10.1021/acs.jctc.8b01232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tao E. Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsing-Ta Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Gu B, Franco I. Electronic interactions do not affect electronic decoherence in the pure-dephasing limit. J Chem Phys 2018; 149:174115. [PMID: 30408977 DOI: 10.1063/1.5049710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The relationship between electronic interactions and electronic decoherence is a fundamental problem in chemistry. Here we show that varying the electron-electron interactions does not affect the electronic decoherence in the pure-dephasing limit. In this limit, the effect of varying the electronic interactions is to rigidly shift in energy the diabatic potential energy surfaces without changing their shape, thus keeping the nuclear dynamics in these surfaces that leads to the electronic decoherence intact. This analysis offers a simple and intuitive understanding of previous theoretical and computational efforts to characterize the influence of electronic interactions on the decoherence and opens opportunities to study exact electronic decoherence with approximate electronic structure theories.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
13
|
Gossel GH, Agostini F, Maitra NT. Coupled-Trajectory Mixed Quantum-Classical Algorithm: A Deconstruction. J Chem Theory Comput 2018; 14:4513-4529. [DOI: 10.1021/acs.jctc.8b00449] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Graeme H. Gossel
- Department of Physics and Astronomy, Hunter College and the City University of New York, 695 Park Avenue, New York, New York 10065, United States
| | - Federica Agostini
- Laboratoire de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, 91405 Orsay, France
| | - Neepa T. Maitra
- Department of Physics and Astronomy, Hunter College and the City University of New York, 695 Park Avenue, New York, New York 10065, United States
- The Physics Program and the Chemistry Program of the Graduate Center, City University of New York, 365 Fifth Avenue, New York, United States
| |
Collapse
|
14
|
Gu B, Franco I. Generalized Theory for the Timescale of Molecular Electronic Decoherence in the Condensed Phase. J Phys Chem Lett 2018; 9:773-778. [PMID: 29343064 DOI: 10.1021/acs.jpclett.7b03322] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We introduce a general theory of electronic decoherence for molecules in the condensed phase that captures contributions coming from pure dephasing effects, electronic transitions among diabatic states, and their interference. The theory is constructed by taking advantage of a recently developed [ J. Phys. Chem. Lett. 2017 , 8 , 4289 - 4294 ] general expression for decoherence times that is based on an early time expansion of the purity dynamics and extends early electronic decoherence models based on pure dephasing ideas. Using this theory, we construct the decoherence time for the displaced harmonic oscillator model amended with constant and linear diabatic couplings, which is a widely used model of the photoexcited dynamics of molecules. The validity of the short-time expansion is demonstrated by the quantitative agreement of the theory with exact numerical computations of the decoherence dynamics obtained using the hierarchical equation of motion method. These developments offer a rigorous understanding of early time electronic decoherence processes that accompany basic molecular events and demonstrate that electronic transitions among diabatic states play a major role in the decoherence dynamics.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Ignacio Franco
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
- Department of Physics, University of Rochester , Rochester, New York 14627, United States
| |
Collapse
|
15
|
Gu B, Franco I. Quantifying Early Time Quantum Decoherence Dynamics through Fluctuations. J Phys Chem Lett 2017; 8:4289-4294. [PMID: 28823164 DOI: 10.1021/acs.jpclett.7b01817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We introduce a general but simple relation between the timescale for quantum coherence loss and the initial fluctuations of operators that couple a quantum system with a surrounding bath. The relation allows the prediction and measurement of early time decoherence dynamics for any open quantum system, through purity, without reconstructing the system's many-body density matrix. It is applied to predict the decoherence time for basic models-the Holstein chain, spin-boson and Caldeira-Legget models-commonly employed to capture electronic, vibrational, and vibronic dynamics in molecules. Such development also offers a practical platform to test the ability of approximate quantum dynamics methods to capture decoherence. In particular, a class of mixed quantum-classical schemes for molecular dynamics where the bath is treated classically, such as Ehrenfest dynamics, are shown to correctly capture short-time decoherence when the initial conditions are sampled from the Wigner distribution. These advances provide a useful platform to develop decoherence times for molecular processes and to test approximate molecular dynamics methods.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry and ‡Department of Physics, University of Rochester , Rochester, New York 14627, United States
| | - Ignacio Franco
- Department of Chemistry and ‡Department of Physics, University of Rochester , Rochester, New York 14627, United States
| |
Collapse
|